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SUMMARY

The design of unconventional aircraft requires the early use of advanced compu-

tational tools such as computational fluid dynamics and finite element methods in

order to predict the performance of the designs outside the range of contemporary

experience. The primary technical challenge that precludes the use of advanced com-

putational tools in early design is the cost in CPU hours required for one design

evaluation. The computational expense, the approximation error in the solutions

due to the convergence of numerical simulations, the unknown convexity and conti-

nuity properties and bounds of the design space, and the possible existence of hard

constraints which can result in failed evaluations make traditional optimization tech-

niques ill-suited for design optimization of unconventional aircraft. Current methods

for incorporating advanced computational tools into early design phases are inade-

quate due to the restricted budgets that are common in early design. This motivates

the need for a robust and efficient global optimization algorithm.

This research presents a novel surrogate model-based global optimization algo-

rithm to efficiently search challenging design spaces for optimum designs. The al-

gorithm, named fBcEGO for fully Bayesian constrained efficient global optimization,

constructs a fully Bayesian Gaussian process model through a set of evaluations of an

unknown function and then uses the model to make new observations in areas where

the expected improvement over the current best value is relatively large. A challenge

in the construction of the fully Bayesian Gaussian process model is the selection of the

prior distribution placed on the model hyperparameters. Previous work has employed

static priors, which may not capture a sufficient number of interpretations of the data

xix
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to make any useful inferences about the underlying function. Thus, the first contribu-

tion of this research is an iterative method that dynamically assigns hyperparameter

priors by exploiting the mechanics of Bayesian penalization in order to marginal-

ize a sufficient number of interpretations. The method corrects the inadequacies of

likelihood-based approaches, which can result in poor inferences of the unknown func-

tion when function evaluations are expensive and therefore scarce. By fitting many

models through the observations and viewing them under the Bayesian methodology,

much more can be learned about the hyperparameters than from likelihood-based

approaches, which compute point values for the hyperparameters. Marginalizing the

uncertainty of the hyparameters into the fully Bayesian model causes the search phase

to be more global initially when compared with likelihood-based approaches, which

is beneficial because a region containing the global minimum is less likely to be over-

looked. The algorithm is extended to general nonlinear programs through the use of

a fully Bayesian constrained expected improvement criterion.

fBcEGO is incorporated into a methodology that reduces failed cases, infeasible

designs, and provides large reductions in the objective function values of design prob-

lems. Four sets of algebraic test problems, including bound constrained, noise cor-

rupted, nonsmooth, and nonlinearly constrained problems, were compiled in order to

test fBcEGO’s abilities in comparison with state-of-the-art methods from the litera-

ture. fBcEGO is shown to solve up to three times as many nonlinearly constrained

problems than the competing methods for a given function evaluation budget. The

methodology is applied to an airfoil section design problem and a conceptual aircraft

design problem. The methododology obtains the largest reduction in the takeoff gross

weight of a notional 70-passenger regional jet versus competing design methods. Ad-

ditional contributions include research on adaptive initial designs and methods for

handling hard constraints.
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CHAPTER I

MOTIVATION

1.1 Design Of Advanced Aircraft Concepts

The development of a new aircraft can be categorized into three major phases: con-

ceptual, preliminary, and detailed design. Design is iterative in nature, with each

iteration or spiral refining the previous solution. Conceptual design of derivative

aircraft is typically performed using simplified physics-based analyses and empirical

design tools based on historical data for each of the design disciplines [96, 95]. These

tools may be unable to predict the behavior of unconventional designs outside the

range of contemporary experience. Figure 1 shows examples of two derivative aircraft,

the Boeing 757-200 and 757-300, and an advanced concept, the Boeing Sonic Cruiser.

The 757 family is similar to previous commercial aircraft, thus previous knowledge

can be used to predict the performance of derivative designs in early design stages.

However, the performance of the Sonic Cruiser, which is meant to travel just be-

low Mach 1.0 [2], cannot be adequately predicted using previous knowledge. Thus,

the design of advanced or unconventional aircraft requires early use of high-fidelity

physics-based tools such as computational fluid dynamics (CFD) and finite element

analysis (FEA).

Computational methods in the aerospace industry have revolutionized design [52,

63, 68, 57, 30]. CFD and FEA have joined the wind tunnel, structural limits test,

and flight test as primary tools of the trade. In contrast with full-scale prototype

testing, computational methods can inexpensively produce simulations leading to an

improved understanding necessary for design. Effective use of computational methods

at the appropriate design stage is a key ingredient in the successful design of modern
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Figure 1: The Boeing 757 series, a family of derivative aircraft (left) and the Boeing
Sonic Cruiser (right) [www.boeing.com].

aircraft.

Perhaps the greatest utility of advanced computational tools is through their use

in “inverse design”, or optimization, predicting the necessary geometric or system

changes to optimize a certain cost function. This feature is of great value in aerospace

design, since small changes in shape or size may lead to significant performance gains

due to the highly coupled and nonlinear nature of the underlying physics. The compu-

tational expense of high-fidelity tools often precludes their use in early design, where

decisions are made that determine up to 80% of the life-cycle cost of a product [100].

However, it is in these early stages where a wide range of unconventional designs are

considered and global rather than local optimization can play a critical role. Incorpo-

rating these tools in early design can lead to better decision making due to increased

fidelity and reduced uncertainty of the design space.

Figure 2 shows the notional benefits of this idea. By incorporating high-fidelity

design tools into early design, a “virtual product” is created. A virtual product is a

“high-fidelity mathematical/numerical representation of the physical properties and

the functions of a product” [120]. Some design milestones, e.g., the first wind tunnel

test, are shown in Figure 2; these may be achieved earlier through the use of high-

fidelity tools in early design. However, the cost of even a few hundred runs of these

tools (a modest number in optimization) can be prohibitive for early design, where

2
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resources are limited and a quick turn-around time is imperative. Figure 3 shows

some tools that are utilized in advanced design and the typical CPU time required

per run. Computational tools currently used in conceptual design, e.g., the panel

code XFOIL, are characterized by short CPU run times on the order of seconds or

minutes and typically employ linearized physics. Tools used in detailed design, e.g.,

the three-dimensional RANS solver OVERFLOW, may require hundreds or thousands of

CPU hours to generate a single solution due to the increased fidelity that is required.

Ideally, there is some method that will enable designers to exploit the benefits of

advanced computational tools under the budget constraints imposed in early design.

Thus, efficient global optimization algorithms have been identified as key enablers in

the early design of advanced or unconventional aircraft.

Time

Fidelity

CFD

Wind
Tunnel

Flight
Test

C
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Figure 2: Classical approach contrasted against the notional benefits of the “virtual
product” approach [100].

Efforts to employ high-fidelity analyses in aerospace conceptual design date back

to the 1960s and 1970s [63] where designers developed polynomial response surfaces

to datasets generated by designs of experiments and searched the design space by

minimizing the response surface; this method continues to be used today [73]. How-

ever, the need to explore globally, the increasing complexity of design, and the often

unknown design variable bounds render the classic response surface methodology inef-

ficient for design optimization of advanced or unconventional aircraft. This has led to

3
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Figure 3: CPU hours required for a single run for some aerospace design tools [52,
68, 32, 102].

the development of advanced surrogate model-based global optimization algorithms

that search for global solutions to design problems stated as nonlinear programs

[54, 57, 39].

With the development of nonlinear programming [75, 117], the engineer gained the

necessary mathematical tools to automatically reduce the design space or completely

specify an optimal design subject to a set of requirements. A nonlinear program is a

problem in the form:

minimize
x∈Rn

y(x)

subject to ci(x) = 0, i ∈ E

ci(x) ≥ 0, i ∈ I

x` ≤ x ≤ xu

(1.1)

where x ∈ Rn is the vector of design variables, y : Rn → R is the objective

function, ci : Rn → R are constraint functions, E and I are disjoint index sets of

equality and inequality constraints, respectively, and xu and x` are vectors of upper

and lower bounds, respectively, on x. This problem can be recast, without loss of

4



www.manaraa.com

generality, in the following form, which is used in the remainder of this document:

minimize
x∈A⊂Rn

y(x)

subject to ci(x) ≥ 0, i = 1, . . . ,m

(NLP)

where ci : Rn → R are m inequality constraint functions, and A = {x|x` ≤ x ≤

xu}. Problem (NLP) is completely general because an equality constraint ci(x) = 0,

can be written as an equivalent two-sided inequality constraint as follows:

ci(x) = 0⇐⇒





ci+m(x) = ci(x) + δ ≥ 0

ci+m(x) = δ − ci(x) ≥ 0
(1.2)

where δ is a relaxation parameter that controls the degree of satisfaction of ci(x) =

0, i.e., for δ = 0, ci(x) = 0 is satisfied exactly.

1.2 Technical Challenges

The computational tools depicted in Figure 3 are subject to a set of technical chal-

lenges that is common to many design problems in the literature (see Table 1). The

technical challenges arise from both the design code and the unfamiliarity of the

design space of unconventional designs. The technical challenges are listed below.

Technical Challenges

1. Utilization of high-fidelity models makes the design codes computationally

expensive, i.e., y(·) is a result of a computationally expensive simulation.

2. Only the objective and constraint function values are reported at a point x,

i.e., the code is a “black-box” executable.

3. Mild deterministic noise is present in the problem due to the convergence

of numerical simulations.
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4. The problem is nonconvex or has unknown convexity properties.

5. The problem has unknown variable bounds.

6. The size of the feasible region is unknown, i.e., it is not known if any feasible

designs exist given the constraints and variable bounds.

7. The problem may be nonsmooth, i.e., C0, due to the utilization of different

models in different regions of the design space.

8. Existence of hard or hidden constraints may cause the code to crash if x

violates some constraint, e.g., geometric. The computational expense of a

failed evaluation is of the same order of magnitude as a successful evaluation.

9. Disconnected feasible regions may be present.

10. Due to 1, 2, 3, 7, 8, and 9, neither analytical nor numerical derivatives are

available.

11. Low-fidelity models to guide the high-fidelity optimization are either inac-

curate or unavailable.

Figures 4 and 5 illustrate some of the technical challenges. Figure 4 shows the two-

dimensional design space of notional aircraft from Chapter 9. This problem exhibits

hard constraints, indicated by the hatched areas, and only 3.4% of the full-dimensional

design space is feasible with respect to the inequality constraints and hard constraints.

Figure 5 shows the design space of an airfoil optimization problem from Chapter 9 as

a function of two geometric parameters. This problem exhibits hard constraints and

code failures interior to the feasible region, as well as disconnected feasible regions.

For both problems, the variable bounds were unknown and had to be assumed or

estimated from a suitable method. It is clear that traditional optimization tools are
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ill-suited to solve such problems. The development of a novel global optimization

algorithm is motivated by these technical challenges.
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Figure 4: Design space of notional 70-passenger regional jet; takeoff gross weight as
a function of wing area SW and thrust-to-weight ratio TWR.
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Table 1: Computationally expensive black-box optimization problems from the liter-
ature.

Problem Reference

Integrated circuit, automotive design problem Jones et al. [56]

2D airfoil design, 3D wing design, wing and flap track
fairing

Forrester [40]

Electro-mechanical actuator Messine [66]

2D airfoil design, 3D wing design Alexandrov et al. [4]

Boeing wing planform design
Audet and Jr. [7], Audet
et al. [8]

Helicopter rotor blade design
Booker et al. [18], Conn
et al. [25]

Heave motion of a ship in head seas Campana et al. [23]

Containership design Sherali and Ganesan [109]

Metal spinning
Henkenjohann and Kunert
[48]

Oilshale pyrolysis, nonlinear continuous stirred reactor Meyer et al. [67]

Circuit simulator Sacks et al. [103]

Multiobjective vehicle system analysis Sasena et al. [107]

Automotive piston design Schonlau et al. [108]

Parametric vehicle controller Villemonteix et al. [119]

Automotive intake port Villemonteix et al. [119]

Centrifugal compressor blade design Berghen [11]

Electricity meter, vibromotor, shock absorber,
magnetic beam deflection system, small aperture
coupling between a rectangular waveguide and a
microstrip line, large scale integration, circuit board
etching, pigment compounds, electromechanical
adsorption, immunological model, nonstationary
queuing system, Steiner problem

Mockus [69]
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1.3 Research Focus & Approach

The investigation of the technical challenges in §1.2 has lead to the following primary

research objective:

Primary Research Objective

Develop a surrogate model-based global optimization algorithm for the general

nonlinear programming problem

minimize
x∈A⊂Rn

y(x)

subject to ci(x) ≥ 0, i = 1 . . . ,m

(NLP)

where x ∈ Rn is the vector of design variables, y : Rn → R is the determin-

istic objective function, ci : Rn → R are m deterministic inequality constraint

functions, and and A = {x|x` ≤ x ≤ xu}.

The following primary research question will guide the literature review in the

sequel:

Primary Research Question

Within the context of surrogate model-based global optimization, what type of al-

gorithm can solve (NLP) more efficiently than the state-of-the-art methods found

in the literature?

The problem discussed thus far is difficult from two perspectives: a theoretical

perspective and a practical algorithm design perspective. The theoretical difficulties

of global optimization are well known. While a local minimum can be mathematically

characterized using the Karush-Kuhn-Tucker conditions [117], there are no conditions
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to characterize a global minimum except when the problem can be shown to be

convex. The only other way to prove that a local minimum is a global minimum

is to identify all local minima. Thus, when global optimization is possible, it is

generally exhaustive, leading to exponential worst-case time complexity for continuous

problems and factorial complexity for discrete problems. Few classes of problems exist

where exhaustive search is practical, e.g., polynomial programming problems [74] and

small-scale combinatorial problems; in general, heuristic approaches must be used to

find solutions that are “good enough.” Nevertheless, the following quote, which relates

directly to design problems, describes why global optimization is still important:

“Often, it may be of considerable interest to know at least whether there

exists any better solution to a practical problem than a given solution

that has been obtained for example by some local method.” [115]

The research problem is also difficult from an algorithm design perspective. There

is little practical guidance available for the design of heuristic algorithms, but these

can be designed through a combination of literature review and numerical experience.

This is in contrast to rigorous algorithms that are based on mathematical conditions.

Table 2 demonstrates the combinatorial aspect of algorithm design. Some alternatives

are listed that may be used to address the technical challenges in §1.1. The table is

not exhaustive. A literature review [75, 117, 39] of available methods leads to the

elimination of a large number of alternatives, which have been grayed out in Table 2.

This process is described next.

The alternatives that can be used to address the black-box technical challenge

are reduced by noise and expense considerations. For example, the approximation

error present in design codes makes finite difference estimates of the gradients im-

possible, while direct methods and metaheuristics can be eliminated due to expense

considerations. For global search, expense considerations can be used to eliminate

10
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Table 2: Matrix of alternatives for the technical challenges.

Challenge Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5

Black-box Surrogate model FD derivatives Direct method Metaheuristics

Global search Metaheuristics Clustering Branch & bound Probabilistic

criterion

Local search Trust-region Line search Nelder-Mead Local model Probabilistic criterion

Constraint

handling

SQP Interior-point Filter Penalty Probabilistic criterion

Computational

expense

Budget Loose

termination

criteria

Reduced-order models Stochastic

process

Use all previous data

Nonconvexity Trust-region Metaheuristics Multi-start Adaptive

surrogate model

Noise &

smoothness

Surrogate model Direct method Trust-region Metaheuristics

Hard

constraints

Assign value Discard

metaheuristics and clustering, while branch & bound methods are eliminated because

rigorous lower bounds cannot be obtained from black-box design codes that only out-

put function evaluations. For local search, the Nelder-Mead method is eliminated due

to expense considerations, while trust-region methods, line search methods, and local

models are eliminated because these methods are local and become expensive under

any globalization strategy, e.g., multistart. The classical trust region methods also

require gradient information, which cannot be obtained here. Expense considerations

can be used to eliminate alternatives for constraint handling, nonconvexity, and noise

& smoothness. Finally, for failed iterations resulting from hard constraints, discarding

the failed iterate is not an economical approach. The remaining alternatives indicate

that a probabilistic surrogate model-based method combined with some additional

techniques to handle the remaining technical challenges can be used to achieve the

primary research objective.

The general framework for such an algorithm [54] is outlined in Algorithm 1. The
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general idea is to evaluate the deterministic objective function y(·) on some initial

set of points D(1) ⊂ A which satisfies the bound constraints of problem (NLP). A

surrogate model is built from the sampled points, which is used to derive an infill

sampling criterion (ISC). The ISC attempts to balance local and global search in

some manner in order to identify promising areas of the design space where the global

minimum is likely to occur. The maximizer of the ISC then serves as the observation

site for the next function evaluation. The sample sets are then updated and the

process iterates until some convergence criterion is met. A key difference between this

type of approach and the classical response surface methodology in design [73, 60] is

that there are no goodness-of-fit tests. This is because the goal of surrogate model-

based global optimization is to focus resources in areas of the design space where the

global minimum is likely to occur, and not to develop a globally-accurate surrogate

model, although there is no limitation that prevents this alternative goal from being

achieved through an alternative ISC.

A flowchart version of Algorithm 1 is presented in Figure 6. The major details

have been left unspecified, as this will form the core of the research. A set of initial

questions corresponding to each box in the flowchart is presented in Figure 6. These

will be refined into research questions in Chapter 7, which will be further developed

into hypotheses and experiments. Chapter 2 reviews some function approximation

techniques that have been used in surrogate model-based methods. The first con-

tribution, a method for assigning hyperparameter priors for fully Bayesian Gaussian

process models, is described here. Chapter 3 contains an in-depth analysis of exist-

ing ISCs for computationally expensive black-box optimization of bound constrained

problems and includes a derivation of a fully Bayesian ISC that is used in this research.

Chapter 4 reviews methods for handling nonlinear constraints within the context of

surrogate model-based global optimization. Chapter 5 discusses additional consider-

ations that are necessary for addressing the remaining technical challenges. Chapter

12
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6 combines the method for assigning hyperparameter priors, the fully Bayesian ISC,

and the additional techniques for addressing the technical challenges into a method-

ology for global optimization of computationally expensive design problems. Chapter

7 outlines a testing plan and develops formal research questions and hypotheses that

will be used to test the proposed algorithm against existing methods. Test problems

from Chapter 7 are documented in Appendix A. Chapter 8 presents the results of the

tests from Chapter 7. Finally, Chapter 9 presents the implementation results of the

proposed methodology on two aircraft-related design problems.

Algorithm 1 General framework for bound constrained surrogate model-based global
optimization.

Select initial design D(1) = {x(1), . . . ,x(k)} ⊂ A and compute the initial sample set
S(1) = {y(x(1)), . . . , y(x(k))}
Set ymin ←∞, i← 1

while not converged do
Fit model to D(i) and S(i)

Compute the next sample point by solving

x(k+1) = arg max
x∈A

ISC(x)

Update: D(i+1) ← D(i) ∪ x(k+1), S(i+1) ← S(i) ∪ y(x(k+1)), i← i+ 1, k ← k + 1
ymin ← min1≤i≤k y(x(i))

end while
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Select D ⊂ A and compute S

converged? exit

Fit model to D and S

Compute next iterate by solving
x(k+1) = arg maxx∈A ISC(x)

Perform evaluation y(x(k+1))

Update D and S

no

yes

How does the initial design affect
performance? Ch. 8

What exit conditions should be used for
black-box problems? Ch. 5

What type of model best addresses the
technical challenges? How should the

model be trained? Ch. 2

What ISC has the best performance?
Ch. 8. How should constraints be

handled? Ch. 4

What if y(·) is noisy or nonsmooth? Ch.
5, Ch. 8. What if the expensive

evaluation fails? Ch. 5

Figure 6: General framework for surrogate model-based global optimization and ini-
tial questions.
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CHAPTER II

FUNCTION APPROXIMATION TECHNIQUES

2.1 Selection Of Surrogate Model

The selection of the surrogate model is presented first, followed by the mathematical

details. The following qualitative criteria, derived from the technical challenges in

§1.2, were used to determine which surrogate model would be used in the proposed

algorithm in Chapter 6:

1. Flexibility: How well does the model capture nonlinearities?

2. Effort: How much computational effort is required to train the model?

3. Sample size: How many observations are required to construct an adequate

model?

4. Interpretation: What interpretation, if any, does the model provide?

5. Uncertainty estimate: Does the model provide an uncertainty estimate?

6. Noise: Can the model handle noise corrupted observations?

The surrogate models are graded in Table 3. Polynomial models are not flexible

enough and if their degree is increased too much the models will begin to interpolate

noise. Polynomial regression requires a large number of observations and polynomial

interpolation has other restrictions. For example, the sample sites must meet some

geometric requirements to ensure that the interpolating model is well conditioned [26].

This is highly restrictive to the search algorithm. Artificial neural networks are more

flexible than polynomial regression but still require a large number of observations.
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Support vector regression (SVR) models do not use all observations, which is undesir-

able in the context of expensive problems [57]. Radial basis function (RBF) models

are acceptable and are used in some of the algorithms reviewed. The RBF spline

interpretation is useful in developing a search criterion within a one-stage framework,

e.g., [44]. Stochastic process models (used in the context of surrogate modeling) are

a type of RBF model but the basis functions are parameterized via the hyperparam-

eters. The basis functions for RBFs are fixed in advance while the basis functions for

stochastic process models are tuned to the observations. Thus, stochastic processes

can be expected to exhibit superior accuracy over RBFs. In addition, the Bayesian

interpretation enables derivation of a probabilistic search criterion and also provides

an uncertainty estimate. Finally, stochastic process models can either interpolate or

regress data through a minor modification. Thus, stochastic process models, and in

particular Gaussian process (GP) models, are selected as the surrogate model. A

demonstration of each surrogate model is illustrated in Figure 7.

16



www.manaraa.com

T
ab

le
3:

R
el

at
iv

e
ca

p
ab

il
it

ie
s

of
su

rr
og

at
e

m
o
d
el

s.

M
o
d

el
ty

p
e

F
le

x
ib

il
it

y
E

ff
or

t
S

am
p

le
si

ze
In

te
rp

re
ta

ti
on

U
n

ce
rt

a
in

ty
es

t.
N

o
is

e

P
ol

y
n

om
ia

l
re

gr
es

si
on

L
ow

L
ow

H
ig

h
–

N
o

Y
es

P
ol

y
n

om
ia

l
in

te
rp

ol
at

io
n

L
ow

L
ow

H
ig

h
–

N
o

N
o

A
rt

ifi
ci

al
n

eu
ra

l
n
et

w
or

k
M

o
d

er
at

e
H

ig
h

H
ig

h
–

N
o

Y
es

S
u

p
p

or
t

ve
ct

or
re

gr
es

si
on

H
ig

h
H

ig
h

L
ow

–
N

o
Y

es

R
ad

ia
l

b
as

is
fu

n
ct

io
n

H
ig

h
L

ow
L

ow
S

p
li

n
e

N
o

N
o

S
to

ch
as

ti
c

p
ro

ce
ss

H
ig

h
H

ig
h

L
ow

B
ay

es
ia

n
Y

es
Y

es

17



www.manaraa.com

x1

x
2

−5 0 5 10
0

5

10

15

(a) Branin function with Latin hypercube samples
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(f) SE Gaussian process

Figure 7: Modeling accuracy of various surrogate models for the Branin function.
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2.2 Gaussian Process Models

The material in this section is based on [104, 94, 57].

2.2.1 Mathematical Background

A Gaussian process (GP) is a collection of random variables, any finite number of

which are jointly Gaussian [94]. A Gaussian process model is a model which views

a deterministic response y(·) as a realization y(·,ω), ω ∈ Ω of a Gaussian random

process Y (·, Ω) defined on some probability space (Ω,B, P0). The concept of a random

process is analogous to a random variable. A random variable is a variable that assigns

some nonnegative value called a probability to a certain outcome of an experiment,

whereas a random process assigns a function drawn from some prior process to the

outcome. Figure 8 illustrates the process.

Sample Space Ω

B

A

x

Y
(x
)

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

E
x
p

er
im

en
t

Figure 8: Illustration of a stochastic process model. An experiment generates some
events A and B in the sample space Ω and each event is assigned some function
generated from a prior process.

The outcome y(·,ω) of the experiment may be approximated through a linear

regression plus GP:

Y (x) =

p∑

h=1

βhfh(x) + Z

= fTβ + Z

(2.1)

where βh are the unknown hyperparameters to be estimated from a sample

set S = {y(x(1)), . . . , y(x(k))}, fh(·), h = 1, . . . , p, are known nonlinear functions, and

Z ∼ N (0, s2) is a zero mean GP prior with variance s2(·) of known form but unknown

hyperparameters, also to be estimated from the sample set S.
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For a deterministic model, it is assumed that the lack of fit of the linear regression

term in equation (2.1) to S is entirely due to an incomplete set of regression terms

in x such that the modeling error between any two points x and x? is dependent

upon some metric d(x,x?) that is zero for x = x?. A stationary covariance function

is employed for this reason. Loosely speaking, a stationary covariance function is

a function of h = |x− x?| and is thus invariant to translations in x. In general, a

covariance function cannot be an arbitrary function of h; see [104, §2.3.3], [94, §4.1]

for the mathematical properties it must satisfy.

A popular covariance function is the anisotropic power exponential class

k(h) = θ0 exp

(
−1

2

n∑

h=1

∣∣∣∣
hh
θh

∣∣∣∣
ph
)

(2.2)

with θ0, θh > 0 and 0 < ph ≤ 2. The hyperparameter θ0 controls the magnitude

(or variance) while θh and ph control the nonlinearity and differentiability of the

sample paths from Y (·), respectively. That is, a small value of θh indicates that the

correlation for a pair of inputs decreases rapidly over a small distance, hence Z(x)

appears more like white noise. For powers ph < 2, the sample paths are theoretically

nondifferentiable. For ph = 2, the power exponential correlation function becomes

the infinitely differentiable Gaussian covariance function, also known as the squared

exponential (SE) covariance function. The isotropic form of the power exponential

covariance function is obtained by setting θ1 = θ2 = · · · = θn and p1 = p2 = · · · = pn.

For any GP with an isotropic covariance function, a point x has the same covariance

with every point on a hypersphere about x. Other classes of covariance functions

exist [104, 94] but the power exponential class is the most general and allows many

shapes to be modeled when no continuity assumptions are made about y(·).

In particular, the Matérn class of covariance functions may be used to incorporate

the continuity assumptions of y(·). Define for the univariate case:

v(h; θ) =
21−ν

Γ(ν)

(
2
√
ν |h|
θ

)ν
Kν
(

2
√
ν |h|
θ

)
(2.3)
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where Γ(·) is the Gamma function and Kν(·) is the modified Bessel function of the

second kind of order ν and ν, θ > 0. Products of (2.3) can be used for modeling n-

dimensional input responses. In this case, the family might include dimension-specific

scale and smoothness hyperparameters, i.e.:

k(h) = θ0

n∏

h=1

v(hh; θh) (2.4)

= θ0

n∏

h=1

21−νh

Γ(νh)

(
2
√
νh |hh|
θh

)νh
Kνh

(
2
√
νh |hh|
θh

)
(2.5)

Equation (2.4) is the anisotropic form of the n-dimensional Matérn covariance

function with hyperparameters ψ = (ν1, . . . , νn, θ0, . . . , θn) ∈ R2n+1
+ . The Matérn

covariance function allows tuning of the mean square differentiability of y(·), which

is not possible with the power exponential family. Let dνe denote the ceiling of ν.

Then functions drawn from a GP having Matérn covariance have a.s. continuously

differentiable paths of order dνe − 1. This may result in a better prediction for

nonsmooth functions.

In GP modeling, prior knowledge about the unknown function y(·) is represented

by a GP with parameterized mean and covariance functions, i.e., the sample set S

has a known multivariate normal distribution with unknown hyperparameters. The

prior is an assumption and does not make use of S. To use the prior to predict y(·)

at general points, it must be updated using S. Let y0 , y(x0) denote the unknown

function value to be predicted at a point x0 and let y(k) = [y(x(1)), . . . , y(x(k))]T be

the vector of observations1. By assumption, S ∪ {y0} has a joint normal distribution

1The observations y(k) are considered values of a single random function drawn from the prior
Y (·, Ω), i.e., [y(x(1)), . . . , y(x(k))]T = [Y (x(1),ω), . . . ,Y (x(k),ω)]T . In the fictional setup of describing
the deterministic function y(·,ω) as a sample path of Y (·, Ω), the deterministic observations y(k) as
well as y0 are also random variables, but in this chapter they are written using the lower case y to
remind the reader that they are not true random variables.
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with specified covariance structure, i.e.,



y0

y(k)


 ∼ N1+k







fT0

F


 β,



k(x0,x0) kT0

k0 K





 (2.6)

where f0 = f(x0) = [f1(x0), . . . , fp(x0)]T is the p × 1 vector of regressors at

x0, F is the k × p matrix of regressors having (i, j)th element fj(x
(i)) for i =

1, . . . , k, j = 1, . . . , p, β is the p × 1 vector of unknown regression coefficients,

k0 =
[
k(x0,x(1)), . . . ,k(x0,x(k))

]T
is the k × 1 covariance vector, and the k × k

matrix K = k(x(i),x(j)) for i, j = 1, . . . , k is a covariance matrix of known structure

but with unknown parameters β and θ to be determined from the sample set. It will

be shown later that it is useful to consider the unknown parameters from a Bayesian

point of view.

The simplest and most common Bayesian approach used to obtain the posterior

predictive distribution p(y0|y(k)) is to assign the improper uniform prior to the mean

β, i.e., β ∼ 1, and to assume that the covariance hyperparameters are known, the

values of which can be obtained later using some other method. The distribution

(2.6) is then conditioned on β:

p(y0, y(k)|β) ∼ N1+k







fT0

F


 β,



k(x0,x0) kT0

k0 K





 (2.7)

The posterior predictive can be obtained from

p(y0|y(k)) =

∫

β

p(y0, β|y(k))dβ

=

∫

β

p(y0|y(k), β)p(β|y(k))dβ (2.8)

The first term in the integrand of (2.8) is obtained from conditioning arguments

[104, lemma B.1.2]:

p(y0|y(k), β) ∼ N
(
µ(x),σ2

0(x)
)

(2.9)
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where

µ(x) = fT0 β + kT0 K−1(y(k) − Fβ) (2.10a)

σ2
0(x) = k(x0,x0)− kT0 K−1k0 (2.10b)

Often, equations (2.10) will be reported in the literature as the mean and variance

of the posterior predictive, but these expressions do not marginalize the uncertainty

in β. Figure 9 illustrates the conditioning process based on equations (2.10). Figure

9a shows four sample functions drawn from a zero mean, unit variance GP prior and

Figure 9b shows four sample functions (dashed lines) drawn from the posterior after

two observations. The mean function (solid line, equation (2.10a)), represents the

mean of all posterior sample functions, i.e., the mean of all functions conditioned on

the observations, and is a function of x. In both plots the shaded area represents

an uncertainty region equal to twice the standard deviation of the process. This

region represents other functions that pass through the observations. Far from the

observations, the mean and variance return to 0 and ±2, respectively, which are the

mean and variance of the GP prior.

The second term in the integrand of (2.8) is obtained from Bayes’ rule:

p(β|y(k)) =
p(y(k)|β)p(β)∫

β
p(y(k)|β)p(β)dβ

= Nk (Fβ, K) · 1

∝ exp

[
−1

2
βTFTK−1Fβ + (FTK−1y(k))T

]

∼ Nk(β̂, Σ) (2.11)

by [104, lemma B.1.1], where

β̂ =
(
FTK−1F

)−1 (
FTK−1y(k)

)
(2.12a)

Σ =
(
FTK−1F

)−1
(2.12b)

23



www.manaraa.com

x

Y
(x
)

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

(a) prior

x

Y
(x
)

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

(b) posterior

Figure 9: Illustration of the GP conditioning process; observations shown as crosses.
Shaded area represents the uncertainty region equal to twice the standard deviation
of the respective distribution. Adapted from [94].

Substituting equations (2.9) – (2.12) into (2.8) and carrying out the integration

results in the following expressions for the mean and variance of the posterior predic-

tive:

Ŷ (x) = E[y0|y(k)]

= fT0 β̂ + kT0 K−1(y(k) − Fβ̂) (2.13a)

s2(x) = E
[
(y0 − Ŷ (x))2

]

= σ2
0 +

(
f0 − FTK−1k0

)T
Σ
(
f0 − FTK−1k0

)
(2.13b)

Figure 10 illustrates the conditioning process based on equations (2.13). Com-

pared with Figure 9, the uncertainty region of the posterior process has increased to

account for the uncertainty in β.

2.2.2 Training The GP Model

The sample functions shown in the previous section were random draws from known

GP priors with known hyperparameters. The core problem of GP modeling is how to
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Figure 10: Illustration of the GP conditioning process with β marginalized; observa-
tions shown as crosses. Shaded area represents the uncertainty region equal to twice
the standard deviation of the respective distribution.

determine the hyperparameters θ = (θ0, . . . , θn) 2 to best model a set of observations.

In a fully Bayesian approach, priors p(θ) are assigned to each of the hyperparameters

which are then marginalized into the posterior distribution using Bayes’ rule

p(y0|y(k)) =

∫
θ
p(y0|y(k), θ)p(y(k)|θ)p(θ)dθ∫

θ
p(y(k)|θ)p(θ)dθ (2.14)

Equation (2.14) is generally nonanalytic, thus some numerical method must be used

to compute the integrals, e.g., Bayesian Monte Carlo [93]. A novel method for training

a fully Bayesian GP model will be described shortly. A common approximation is

obtained via maximum likelihood estimation (MLE), which assumes that p(y(k)|θ) is

degenerate with all its mass located at θ = θ̂MLE, i.e., p(y(k)|θ) ∼ δ(θ − θ̂MLE). MLE

is used extensively [104, 56, 94] due to its simplicity. The problem of estimating the

hyperparameters then becomes

maximize
θ∈Rn+1

log `(θ|y(k))

subject to θ > 0

(2.15)

2This set is for a zero mean GP prior; for a constant mean prior, the set of hyperparameters
includes β and also σ2 , θ0 is sometimes treated separately.
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where `(θ|y(k)) , p(y(k)|θ) is a likelihood function. Under a multivariate normal

assumption and general covariance structure, the likelihood function is

`(θ|y(k)) = (2π)−n/2 |K|−1/2 exp

[
−1

2
(y(k) − Fβ)TK−1(y(k) − Fβ)

]
(2.16)

where |·| denotes the determinant of a matrix. The log-likelihood function is then

log `(θ|y(k)) = −1

2

[
k log 2π + log |K|+ (y(k) − Fβ)TK−1(y(k) − Fβ)

]
(2.17)

Problem (2.15) is then solved to determine the hyperparameters θ. Problem (2.15)

is a bound constrained nonlinear programming problem for which there are several

applicable techniques. To solve this problem, either a stochastic method can be used

to find a good starting point for a local minimizer or a multistart method can be

used with a gradient-based solver. A closed-form equation for the gradient of the

log-likelihood function, equation (2.17), may be useful [94]:

∂ log `(θ|y(k))

∂θj
= −1

2

[
Tr

(
K−1∂K

∂θj

)
− (y(k) − Fβ)TK−1dK

dθj
K−1(y(k) − Fβ)

]
(2.18)

=
1

2
Tr

((
ααT −K−1

) ∂K

∂θj

)
where α = K−1y(k) (2.19)

If S is corrupted by output-dependent noise such that the observed values are

now z(x) = y(x) + ε, a noise term εn = δiiθn can be appended to the covariance

function, where δii is the Kronecker delta and θn is the noise variance which is treated

as an additional hyperparameter. The GP will no longer interpolate the observations;

rather, it will regress them. See §5.4 for details.

2.2.3 Limitations & Scalability

The computational effort required to train a GP model with anisotropic covari-

ance function is O(n3). Preliminary results indicate that training GP models with

anisotropic covariance functions works well for small n, say, n ≤ 3, but may become

computationally intractable for larger n. One way remedy the curse of dimensionality

is to use an isotropic covariance function such that θ1 = θ2 = · · · = θn. This forces
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the GP model to employ the same lengthscale parameter θ in every coordinate direc-

tion, which may reduce modeling flexibility in some cases, but this is not guaranteed.

Examples of two-dimensional random functions drawn from GPs having anisotropic

and isotropic SE covariance functions are shown in Figure 11. The utilization of

an isotropic covariance function is crucial to the success of the novel model fitting

method that is described in §2.2.5, since this choice of covariance functions allows the

method to bypass the curse of dimensionality at the model fit step (and also at the

ISC maximization step).
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Figure 11: Illustration of anisotropic and isotropic SE covariance functions. Left,
θ1 = 0.1, θ2 = 0.2; right, θ1 = θ2 = 0.1

2.2.4 Inadequacy Of Likelihood-Based Approaches

Conceptually, MLE leads to the values of the hyperparameters that were most likely

to have generated S. In general, the more observations, the more peaked `(θ|y(k))

becomes, and MLE is justified (see Figure 12). When data is scarce, e.g., in the case

of expensive problems, there is more mass away from the peak of `(θ|y(k)) and the

entire distribution becomes important [94]. In this case the fully Bayesian approach

must be used to marginalize the uncertainty in θ.

In general, `(θ|y(k)) is multimodal with every maximum corresponding to a par-

ticular interpretation of the data. In Figure 13, an example with two local maxima is
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shown together with the corresponding posterior predictive distributions. The global

maximum corresponds to a relatively complicated model with low noise, whereas the

nonglobal maximum corresponds to a simpler model with a higher noise level. Nei-

ther of the two models in Figure 13 is correct, since the data were generated from a

zero mean, unit variance GP with SE correlation function having3 θ = 1 and noise

variance θn = 0.1. George P. Box famously noted that “essentially, all models are

wrong, but some are useful” [19]; a human observer may find it difficult to decide

which of the two models, if any, is correct, or even which is the most probable. The

true hyperparameters are represented by the diamond marker on the log-likelihood

plot and the corresponding true model is shown in the bottom left of Figure 13. The

true model is a compromise between the two models predicted by MLE. This phe-

nomenon arises from the interactions between the terms in the log-likelihood function,

equation (2.17). The second term inside the brackets in equation (2.17) involves the

determinant of the covariance matrix, which decreases monotonically with increasing

lengthscale factor θ, and thus favors less complex models. The last term is a data-

fit term which increases monotonically with increasing lengthscale. For sparse data,

these competing effects can lead to unreasonable models. As more data is added, the

complexity penalty log |K| becomes more severe, discouraging short lengthscales. Ac-

cording to the Bayesian methodology, one ought to marginalize the hyperparameters

to obtain a posterior predictive that integrates the effects of many lengthscales.

Besides MLE, there are other approaches for computing estimates to the hyperpa-

rameters θ [104, §3.3.2], [94, §2.1.1]. These include the maximum a posteriori (MAP)

approach, restricted MLE (or marginal MLE [94]), and cross-validation. In the liter-

ature, MLE appears to be the most popular method for training a GP. The issue of

which method is best has not been studied in depth [104, §3.3.2]. However, these al-

ternative methods suffer from similar drawbacks as MLE since each of these methods

3In the case n = 1, the subscript h in θh may be omitted and it is understood that θ = θ1
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are likelihood-based approaches.

2.2.5 Fully Bayesian Approach

In a fully Bayesian setting, all unknown parameters of the predictive distribution

p(Y |y(k)) are assigned prior distributions. While Bayes’ rule describes how to update

a prior after making observations, there is no law of probability that describes what

the prior should be. The general problem of selecting priors is unresolved and the

necessity of having to guess a prior is the source of opposition of frequentists to the

Bayesian methodology [6].

The most fundamental intuition one can appeal to when assigning priors is the

well-known principle of indifference, or principle of insufficient reason. The principle

of indifference asserts that in the absence of positive ground for assigning unequal

probabilities to a set of arguments, equal probabilities must be assigned to each of

them [58], i.e., to say that the probabilities are equal is the precise way of saying that

there exists no ground for choosing between the alternatives [51].

An important class of priors is the conjugate prior. A prior is conjugate to its

posterior if the posterior and prior are in the same family of distributions. Conjugate

priors lead to closed-form posteriors, but may not always be reasonable choices. The

number of conjugate priors for a family of likelihood functions is very limited [34].

Another important class is the improper prior, which offers a simple solution to the

marginalization problem, but may not always lead to a proper posterior. Improper

priors do not satisfy
∫
p(x)dx = 1 and are also uninformative, i.e., they represent

vague or general information about a random variable. The reason why some improper

priors such as the uniform improper prior lead to proper posteriors is that these priors

are the probability limits of proper priors. For example, computing a GP posterior

with a normal prior on the mean and then taking the limit as the variance of the mean

goes to infinity gives the same result as a GP posterior with a uniform improper prior
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Figure 12: The effect of the number of observations on the likelihood. Observations
(crosses) drawn from a zero mean, unit variance GP with SE covariance function
having θ = 1 and noise variance θn = 0.1. GP models were conditioned to the ob-
servations using the a priori parameters and the log-likelihood functions log `(θ|y(k))
are shown as a function of θ. Shaded area denotes an uncertainty region of ±2s.
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Figure 13: Log-likelihood as a function of the hyperparameters θ and θn, bottom
right; MLE fit corresponding to the global maximum log-likelihood (× symbol on
likelihood plot), top left; MLE fit corresponding to the local maximum likelihood (+,
top right; function corresponding to the true hyperparameters θ = 1 and θn = 0.1
that also generated the data (3 symbol on log-likelihood plot), bottom left. Shaded
area denotes an uncertainty region of ±2s.
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on the mean.

Consider the case of a Gaussian process Y (·) with unknown scalar constant mean

β and covariance function k(h) = σ2r(h). Assume that β and σ2 are independent

and that β ∼ 1, i.e., β is assigned the uniform improper prior, and σ2 ∼ IG(a0, b0),

i.e., σ2 follows an inverse Gamma distribution with shape parameter a0 and scale

parameter b0.

A constant mean prior N (β,σ2R) is placed on the unknown function y(·). The

first goal is to obtain an expression for the predictive distribution p(Y |y(k), θ). Begin

by writing

p(Y |y(k), θ) =

∫

σ2

p(Y |y(k),σ2, θ)p(σ2|y(k), θ)dσ2 (2.20)

The term p(Y |y(k),σ2, θ) can be shown [104] to be distributed as N (µ,σ2κ2) with

mean and variance defined by equations (2.13), restated here to reflect the constant

mean GP prior:

µ(x) = β̂ + rT0 R−1(y(k) − β̂)

β̂ =
1TR−1y(k)

1TR−11

κ2(x) = 1− rT0 R−1r0 +

(
1− 1TR−1r0

)2

1TR−11

The term p(σ2|y(k), θ) in equation (2.20) can be computed from the prior p(σ2)

and Bayes’ rule:

p(σ2|y(k), θ) =
p(y(k)|σ2, θ)p(σ2)∫

σ2 p(y(k)|σ2, θ)p(σ2)dσ2
(2.21)

The term p(y(k)|σ2, θ) in equation (2.21) can be computed from

p(y(k)|σ2, θ) =

∫

β

p(y(k)|β,σ2, θ)p(β)dβ

=

∫

β

N (β,σ2R) · 1 · dβ

∝ (σ2)−(k−1)/2 exp

[
− 1

2σ2

(
(y(k))TR−1y(k) (2.22)

−(1TR−1y(k))T β̂
)]

(2.23)
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Since the terms in equation (2.21) are conjugate, carrying out the integration gives

the analytical expression

p(σ2|y(k), θ) ∼ IG(ak, bk) (2.24)

with

ak = a0 +
k − 1

2
(2.25a)

bk = b0 +
1

2

[
(y(k))TR−1y(k) −

(
1TR−1y(k)

)T
β̂
]

(2.25b)

That is, the conditional distribution of σ2 given y(k) and θ is inverse Gamma with

real shape and scale parameters ak and bk, respectively.

Substituting (2.24) into (2.20) and carrying out the integration yields

p(Y |y(k), θ) ∼ tηk=2ak

(
µ(x), γ2

k(x) , (bk/ak)κ
2(x)

)
(2.26)

That is, the conditional predictive distribution at x is a location-scale t distribution

with ηk = 2ak degrees of freedom, location parameter µ(x), and scale parameter

γ2
k(x) , (bk/ak)κ

2(x). The variance of this distribution is

Var(Y |y(k), θ) = γ2
k(x)

ηk
ηk − 2

, ηk > 2 (2.27)

Thus, the sample size k and a0 are related through

k ≥ d3− 2a0e (2.28)

where d·e is the ceiling operator. Condition (2.28) must be met at all iterations,

including the initial design.

In general, equation (2.14) must be approximated through some numerical tech-

nique. This procedure can become expensive since the integral (2.14) must be ap-

proximated at many points. The calculations can be greatly simplified by assuming

a discrete prior p(θ), in which case the integral (2.14) becomes a summation over
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the p.m.f. The procedure using a discrete prior p(θ) is as follows. The predictive

distribution p(Y |y(k)) can be computed from

p(Y |y(k)) =

∫

θ

p(Y , θ|y(k))dθ

=

∫

θ

p(Y |y(k), θ)p(θ|y(k))dθ

=
∑

i

p(Y |y(k), θi)p(θi|y(k)) (2.29)

where the last equality in equation (2.29) comes from the fact that p(θi|y(k)) is

discrete4. Thus, p(Y |y(k)) is a finite mixture distribution. The term p(θi|y(k)) is

computed using Bayes’ rule:

p(θi|y(k)) =
p(y(k)|θi)p(θi)∑
i p(y

(k)|θi)p(θi)
(2.30)

The term p(y(k)|θi) is computed as

p(y(k)|θi) =

∫

σ2

p(y(k)|σ2, θi)p(σ
2)dσ2

=
|R|−1/2

(1TR1)1/2

ba00

bakk

Γ(ak)

Γ(a0)
(2.31)

where Γ(·) is the gamma function. It can be shown that the mean and variance

of the finite mixture distribution p(Y |y(k)) are:

µ =
∑

i

p(θi|y(k))µi (2.32)

σ2 =
∑

i

p(θi|y(k))
(
µ2
i + σ2

i

)
− µ2 (2.33)

where µi = E[Y |y(k), θi] and σ2
i = var(Y |y(k), θi).

The fully Bayesian method is compared with the MLE method in Figure 14, where

models are constructed through four observations. For the fully Bayesian method, the

prior p(θ) is the uniform discrete prior with one hundred elements uniformly spaced

in the log space −7 ≤ log θ ≤ log(2). The fully Bayesian approach marginalizes the

4In this context, the index i denotes all combinations of θ1, . . . , θn in the domain of p(θ)
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uncertainty in the hyperparameters in the GP model, thus increasing the uncertainty

bands around the prediction. This corrects the major drawback in MLE-based ap-

proaches, which is that the hyperparameters obtained by MLE can give a deceptive

picture of the unknown function. It remains to define a method for assigning the

discrete prior.

x
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 14: MLE fit (left) compared with fully Bayesian fit (right). Shaded area
represents an uncertainty region of ±2s.

2.2.6 Contribution: Method For Assigning Hyperparameter Priors

The demonstration of the fully Bayesian approach in Figure 14 made use of a discrete

prior, but little work is found in the literature describing how to assign a practical

prior [79, 45]. In [79], a uniform prior over a fixed continuous domain is used for the

hyperparameters, which is then marginalized into the predictive distribution using

BMC (Bayesian Monte Carlo, see Appendix B). BMC employs MLE and thus rein-

troduces the associated drawbacks into the method, although it is not clear as to what

degree they impact the performance. According to numerical results in Appendix B,

BMC may produce a substantial number of large outliers for some problems. In ad-

dition, a truncated prior may be a poor assumption since the hyperparameter values

excluded from the prior may be relevant, while those included may provide negligible

contribution to the final model.
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This section begins by demonstrating an emergent property of Bayesian inference

which penalizes values of θ that result in unnecessarily complex models and overly

simple models. In the context of GPs and the described covariance functions (2.2.1),

complexity is measured by the value of θ; low θ values result in highly nonlinear

models that are deemed complex. The penalization property is used as the basis of

an iterative method that attempts to construct a prior p(θ) that results in a posterior

p(θ|y(k)) that has most of its mass located on the interior of the distribution (as

opposed to on the boundary). The combinations of θ that contribute the most mass

to p(θ|y(k)) are then used to construct the fully Bayesian model for the unknown

function.

The penalization mechanic is illustrated in Figure 15, where four different models

Ŷ (x) = E[Y |y(k), θ] are shown along with their convex combination, equation (2.29),

which is the predictive distribution (dotted line). The posterior probabilities p(θ|y(k))

are computed for the hyperparameter prior

p(θ) =





1
4
, log10 θ = −2,−1, 0, 1

0, else
(2.34)

Based on the posterior values p(θ|y(k)), the hyperparameters log10 θ = −2,−1

make a negligible contribution to the predictive distribution, with θ = 1 being pre-

ferred with a posterior probability of 0.93162. There is also the possibility that a

model can be “too smooth,” i.e., its θ value is so large that the model begins to

approach the mean of the data. In theory, the mean function interpolates the data

for all θ, but in practice, large values of θ can lead to poor conditioning; the solution

to this is to introduce artificial noise into the model so that it regresses the data

(see §5.4). These competing effects lead to the nonuniform posterior distribution for

p(θ|y(k)) shown in Figure 16

In the example above, a user may wish to refine the prior 2.34 to include larger

values of θ because for θ = 10, the mass on the boundary is p(θ|y(k)) = 0.051483,
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Figure 15: Bayesian penalization of unnecessarily complex and overly simple models.
Conditional models (solid lines) and weighted sum model (dotted line).
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Figure 16: Dense posterior distribution for the problem in Figure 15.
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indicating that some values θ > 10 may provide some additional significant contri-

bution to the model. An iterative strategy can be developed that generates θ such

that most of the mass of p(θ|y(k)) occurs on the interior of the p.m.f. The strategy is

outlined below.

1. Select a prior p(θ) and compute p(θ|y(k)).

2. (Iteration step) If any p(θ|y(k)) on the boundary of θ are large, extend θ in

that direction by some amount and recompute p(θ|y(k)).

3. Construct the fully Bayesian model using the elements from θ corresponding to

most of the mass in p(θ|y(k)).

The last step above reduces the analytical effort since for small p(θ|y(k)), the condi-

tional model p(y0|y(k), θ) in equation (2.29) is insignificant. The strategy is illustrated

in Figures 18 – 20 for the test function shown in Figure 17, which is the − log(−y)

transformation of the Shekel’s Foxholes problem B-13. The full prior and posterior

obtained by iteration is also shown in Figure 17. In general, the domain of θ that

contains most of the mass is unknown since the function is unknown. Figure 18 shows

p(θ|y(k)) based on an initial prior p(θ), which is an assumption, and the resulting GP

model for the test function. The posterior probabilities are nearly uniform. This can

mean one of two things. The first is that the initial prior was chosen close to the

“true” prior and each mode is favored equally. The second is that all elements of the

prior are incorrect and unfavorable, i.e., the available values of θ were insufficient to

infer anything useful about the underlying function. The latter possibility is far more

likely to occur than the former and this claim is validated based on the right-hand

panel in Figure 18, which is the Bayesian model constructed from the prior. A third

interpretation of this result is that the iterative procedure is a process to “uncover”

the true prior.
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After one iteration, the prior p(θ) is expanded to include longer lengthscales,

resulting in the posterior distribution shown in Figure 19. The posterior is starting

to show a distribution but there is still a large amount of mass on the boundary of θ

in the positive log direction. The resulting GP model, constructed from the prior, is

starting to model the major features of the true function. At this point, a user can

terminate the method, but in general the true function is unknown and this sort of

comparison cannot be made.

A third iteration results in the further expansion of p(θ), which gives the posterior

shown in Figure 20. Most of the mass is contained on the interior and there is little

mass on the boundary, thus this is the last iteration. The resulting model constructed

from the prior (Figure 20) now shows many subtle features of the true function. The

top six favored modes, normalized to Ŷ (x) ∈ [0, 1] for comparison, are shown in Figure

21. The sixth mode is approximately equal to the value of θ found by MLE. Compared

with MLE (Figure 22), the fully Bayesian approach is better able to model nonlinear

functions that require combinations of hyperparameters to capture the landscape

features. It is envisioned that, when using this method to construct the model in

Figure 20, a search algorithm would be able to accurately locate the global minimum

of the true function with only a few more function evaluations.
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Figure 17: Test function used to demonstrate the proposed method along with dense
hyperparameter posterior.
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Remark 2.2.1 Relation of fully Bayesian approach to MAP method

As p(θ) and hence p(θ|y(k)) become more populated, a p.m.f. such as that shown

in Figure 17 arises. The maximum of the distribution is the most likely value, and

this is precisely the value that is sought after in the maximum a posteriori (MAP)

method, i.e.,

θ̂MAP = arg max
θ

(
p(θ|y(k)) ∝ p(y(k)|θ)p(θ)

)
(2.35)

The MLE approach searches for the θ that maximize p(y(k)|θ).

2.3 Radial Basis Functions

The material in this section is based on [44, 54, 57].

The radial basis function interpolation problem is to find a function of the form

ŷ(x) =
k∑

i=1

λiφ(‖x− x(i)‖2) + p(x)

=
k∑

i=1

λiφ(‖x− x(i)‖2) +

p∑

i=1

bipi(x) (2.36)

that interpolates S at the observation locations x(i), i = 1, . . . , k. The coefficients

λi, i = 1, . . . , k, are real numbers and pi(·) is from Pdn, the space of polynomials of

degree less than or equal to d in Rn with p = dimPdn. The following choices of φ(·)

are considered:

φ(r) = r linear

φ(r) = r3 cubic

φ(r) = r2 log r thin plate spline (2.37)

φ(r) =
√
r2 + γ2 multiquadric

φ(r) = e−γr
2

Gaussian

where r ≥ 0 and γ is a prescribed positive constant. The polynomial p(·) is

required so that the linear system of equations that must be solved to obtain the
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interpolator is nonsingular. The coefficients of ŷ(·) in equation (2.36) are defined

uniquely by the system

ŷ(x(i)) = y(x(i)), i = 1, . . . , k

k∑

i=1

λipj(x
(i)) = 0, j = 1, . . . , d

(2.38)

In matrix form, this is



Φ P

P T 0






λ

b


 =



y(k)

0


 (2.39)

where Φij = φ(‖x(i) − x(j)‖2) for i, j = 1, . . . , k, Pij = pj(x
(i)) for i = 1, . . . , k and

j = 1, . . . , p, λ = [λ1, . . . ,λk]
T , and b = [b1, . . . , bp]

T .

2.4 Kernel Machines

The material in this section is based on [94].

GP models are an example of a class of methods known as kernel machines. GP

models are distinguished by the probabilistic viewpoint taken (see the references

in [57, 94]). Support vector machines (SVMs), relevance vector machines (RVMs),

splines, and least-squares classifiers are all examples of kernel machines [94].

The problem of inferring an underlying function y(·) from a finite and possibly

noise corrupted dataset without any additional assumptions is ill-posed; any function

that passes through the observations is acceptable. Under a Bayesian approach, a

prior is assigned to a set of underlying functions, and given the observations, the

posterior is derived. The main argument against this viewpoint is the non-rigorous

process of assigning the prior. The regularization viewpoint addresses this assumption

by investigating the smoothness of y(·). Consider the functional

J (y(x)) =
λ

2
‖y‖2

H +Q(T , y(k)) (2.40)

where T is a vector of target values to be predicted and λ is a scaling term that

trades off the two terms. The first term is called the regularizer and represents the
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smoothness assumptions on y(·), and the second term is a data-fit term assessing

the quality of the prediction ŷ(x(i)) at the observations. The regularization method

returns ŷ(·) = arg miny J (y(x)), which can be viewed as the MAP estimate under the

posterior. While the regularization solution gives a part of the GP solution, it suffers

from the following limitations:

1. It does not characterize the uncertainty in the predictions, nor does it handle

well any multimodality in the posterior.

2. The analysis is focused at approximating the first level of Bayesian inference,

concerning predictions for y(·). It is not usually extended to the next level, e.g.,

to the computation of the marginal likelihood, which is useful for setting the

parameters of the covariance function and for model comparison.

GP spline models are closely related to the regularization method. While they do

not suffer from the same drawbacks as the regularization method, GP spline models

result in a piecewise cubic polynomial mean function but with nonsmooth posterior

samples.

SVMs were originally introduced for classification problems, then extended to deal

with regression. The key concept is that of the ε-insensitive error function, defined as

gε(z) =




|z| − ε, |z| ≥ ε

0, |z| < ε
(2.41)

which is a data-fit assessment term that is used in manner similar to that of equation

(2.40). A disadvantage of SVM regression is that it does not have a clear probabilistic

interpretation. In addition, the use of equation (2.41) as the data-assessment term

discards observations close to the mean function ŷ. This effect is motivated by the

desire to obtain a sparse solution and hence reduce the fitting time, but for expensive

functions, discarding observations may not be desirable.
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RVMs are a special case of GPs, but with degenerate covariance functions that

depend on the observations:

k(x(i),x(j)) =
k∑

m=1

α−1
m φm(x(i))φm(x(j)) (2.42)

where the basis functions φm(x(i)) are centered on the k observations, i.e., φm(x(i)) =

φm(‖x(i) − x(m)‖). This dependence violates the Bayesian interpretation. Fitting the

RVM is similar to fitting some GP models: maximize the marginal likelihood with

respect to the hyperparameters. The optimization process may lead to a significant

number of the αm tending towards infinity, effectively pruning the corresponding basis

functions from the covariance function (2.42). The pruned basis functions are consid-

ered irrelevant in the model and the surviving basis functions are termed relevance

vectors. Typically the number of relevance vectors is less than the number of training

cases, thus it will be faster to fit a RVM than a GP. There is one serious drawback

to RVMs: points that lie far away from the relevance vectors will be predicted with

variance close to zero. Thus, RVMs provide desirable computational properties, but

at the expense of modeling integrity.
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CHAPTER III

INFILL SAMPLING CRITERIA

3.1 Overview Of Existing Algorithms

Within the engineering community, surrogate models have gained popularity as a

way to develop computationally inexpensive representations of expensive functions.

This is evident from the number of recent journal papers and textbooks published on

the subject [40, 57, 54, 56, 108, 44, 97, 79]. The promise of surrogate model-based

global optimization is depicted in Figure 23, where a GP model has been used to

reconstruct the Branin function; the reconstruction is nearly indistinguishable from

the true function.

The simplest surrogate model-based approach for global optimization is to sample

the design space, fit a global surrogate model, and sample new points by selecting

those that minimize the model. The model is then updated and the process is repeated

until some stopping criterion is met. However, this approach fails to search globally

and is likely to miss the global minimum or can converge to a point that may not even

be a critical point of the original function [54]. Thus, ISCs for surrogate model-based

global optimization must balance exploration with exploitation.

At the highest level, surrogate models can be differentiated based on whether they

are interpolating or non-interpolating. Some surrogate models are capable of both

regression and interpolation with similar computational effort. For selecting iterates, a

key distinction is between one-stage and two-stage methods. Most current approaches

are two-stage methods. In the first stage, a surrogate model is fit to the available

data. In the second stage, an ISC based on the surrogate model is maximized in order

to guide the selection of the next iterate. The main problem with two-stage methods
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(b) Gaussian process model

Figure 23: Illustration of surrogate model-based approach.

is that the initial sample may give a misleading picture of the function; as a result, one

may underestimate the error in the surrogate model and either terminate the search

prematurely or place too much emphasis on local search. In one-stage approaches, no

surrogate model is fit through the data. Instead, surrogate modeling mechanics are

used to evaluate hypotheses about the existence of points with certain values. Table

4 presents a taxonomy of six surrogate model-based global optimization methods

from the literature, which will be reviewed in this chapter. Four of the methods are

Bayesian (P-algorithm, EGO, osEGO, FB-EGO), while the remaining two algorithms

typically use RBFs (RBF-G and CORS). A seventh algorithm (not listed), is known

as DIRECT. This is not a surrogate model-based method but rather a Lipschitzian

algorithm which has been shown to be competitive.

surrogate model-based global optimization has four advantages [54]. First, this

technique often requires the fewest function evaluations of all competing methods.

This is possible because a search algorithm can move to areas of the model that predict

minima, rather than having to take steps along some trajectory like local methods.

Second, some surrogate model-based approaches can provide credible stopping rules
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based on confidence intervals. Third, the surrogate model-based approach provides

an inexpensive approximation to the expensive function. Finally, through proper

experimental design, statistical analyses can be performed on the model to determine

the most important variables.

Table 4: Overview of existing algorithms (adapted from [54]).

Surrogate Model
Search Method

One-stage methods:

evaluate hypotheses about

minimum using surrogate

model

Two-stage methods: fit a

model then find the next

iterate by solving an auxiliary

problem

Interpolating

� RBF-G [44] � EGO [56]

� osEGO [91] � CORS [97]

� P-Algorithm [122]

� FB-EGO [10]

Non-interpolating � osEGO [91] � EGO [56]

� CORS [97]

� P-Algorithm [122]

� FB-EGO [10]

3.2 Improvement-Based Infill Sampling Criteria

3.2.1 Probability Of Improvement

The most popular surrogate model-based global optimization algorithms are heuristi-

cally motivated by an improvement function which is a random variable that describes

the probability of obtaining a new function value y(x) that is better than some target

value yT ≤ ymin, where ymin , min1≤i≤k y(x(i)) is the current best function value over

k function evaluations made so far. Let Y ∼ N (Ŷ , s2) be the random variable that

models the uncertainty about a function’s value at x (the dependence of Ŷ and s2

on x is implied). The improvement below yT at a point x is I = (yT − Y )+, where
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(z)+ = max(z, 0). I(·) is a random variable because Y (·) is a random variable. An

ISC for GP-based algorithms can be constructed by taking moments of the improve-

ment function and selecting the next iterate x(k+1) as the maximizer of the auxiliary

function. Taking the first moment of the improvement function results in the popular

ISC known as the probability of improvement, i.e.,

E[I0(x)] =

∫ yT

−∞
p(Y )dY

= P(Y (x) ≤ yT ) (3.1)

Algorithms which employ the ISC (3.1) are collectively known as P-algorithms.

The P-algorithm seeks the next iterate using a one-step lookahead method on the

conditional probability1 to fall below a given level yT :

x(k+1) = arg max
x∈A

P
(
Y (x) < yT |Ŷ (x(i)) = y(x(i)), i = 1, . . . , k

)
(3.2)

Thus, the P-algorithm maximizes the probability of improvement below a target

yT at each iterate (see Figure 25). This result has been developed both heuristically

[62] and axiomatically [114, 123]. Žilinskas [122] develops the P-algorithm for a uni-

variate objective function that is modeled by a Wiener process. The selection of yT

at each step is critical to the success of the algorithm, where yT � ymin leads to a

fairly global search and yT closer (but still less than) ymin leads to a fairly local search.

Kushner [62] chooses

yT = ymin − ε (3.3)

with monotonically decreasing ε. Žilinskas [122] chooses

yT = ymin −
1

2

(
max
1≤i≤k

y(x(i))− ymin

)
(3.4)

1The conditioning event ŷ(x(i)) = y(x(i)), i = 1, . . . , k represents the noise-free information gained
in the observations 1, . . . , k and is sometimes omitted in the equations in the literature. In such cases
it is understood that the next observation depends on all previous information.
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but it is shown in a later paper [21] that the strategy of Kushner leads to better

convergence rates. Specifically, Calvin and Žilinskas [21] choose

εi = i−1+δ (3.5)

for some small positive δ < 1 at each iteration i.

The majority of work on the P-algorithm [62, 122, 123, 124, 22] has been for one-

dimensional multimodal optimization and extending the axiomatic P-algorithm to

the n-dimensional case has proved difficult [22, 125, 114, 113, 81, 82, 69, 124]. In this

research, the heuristic motivation for the P-algorithm is extended to the multidimen-

sional case using GPs [54]. The search criterion is defined by (3.2). Jones [54] choses

a set of targets T and solves (3.2) multiple times per iteration. The results are then

clustered and a few points are chosen to proceed. However, this approach proved to

be costly and did not produce better results than choosing a single target yT based

on a strategy in [44]. In both cases, values of yT cycle such that the search proceeds

from global to local. The performance of the P-algorithm on the one-dimensional test

function

y(x) = x (sin(10x+ 1) + 0.1 sin 15x) (3.6)

is shown in Figure 24.

Remark 3.2.1 Numerical underflow in GP-based P-algorithm [41]

For a GP, the probability of improvement in problem (3.2) is calculated as

P(ŷ(x) < yT ) = Φ(u) (3.7)

=
1

2
(1 + erf(a)) (3.8)

where u , (yT − Ŷ )/s and a = u/
√

2. Typically, the target values yT will be

large and negative and so erf(·)→ −1. This often leads to numerical underflow and

P(ŷ(x) < yT ) = 0. When a � −1, erf(a) can be expressed using an asymptotic
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expansion [3, eq. 7.2.14] and equation (3.8) becomes

P(Y (x) < yT ) =

(
1

2
√
π

∞∑

n=0

(−1)n(2n− 1)!!

2n
a−(2n+1)

)
exp(−a2) (3.9)

Problem (3.2) can be then solved over the logarithmic space without underflow

problems. 2
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Figure 24: Selected iterations of a GP-based P-algorithm on test function (B.11).
Shaded area denotes an uncertainty region of ±2s
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3.2.2 Expected Improvement

Perhaps a more powerful way to make use of the improvement function is the maximize

its expectation over A and select the next iterate as the maximizer of the expected

improvement. An improvement in the best function value ymin found so far will be

obtained if Y < ymin, so I = (ymin − Y )+ in this case. The expected improvement

(EI) is then

EI(x) , E [(ymin − Y )+] (3.10)

where EI(x) denotes the expectation of I as a function of x. Let u , (ymin − Ŷ )/s

and let v , (Y − Ŷ )/s. Then I = (s(u− v))+ and

EI(x) =

∫ u

−∞
s(u− v)p(v)dv (3.11)

For a GP, the expectation of the improvement can be written in closed form as

EI(x) =





s[uΦ(u) + φ(u)], s > 0

0, s = 0
(3.12)

where φ(·) and Φ(·) are the standard normal density and distribution functions,

respectively. The first term in equation (3.12) is the predicted difference between

the current minimum and the prediction Ŷ (x), penalized by the probability of im-

provement below ymin. Hence, it is large when Ŷ (x) is likely to be smaller than

ymin. The second term is large when the error s(x) is large, i.e., when there is a

high degree of uncertainty about whether y(x) will be better than ymin. Thus, the

first term controls the local search while the second term controls the global search.

The balance between exploitation and exploration is automatically adjusted by the

parameters in equation (3.12) and no target values are required (see Figure 25). Re-

cent work [118, 20] has characterized some of the convergence properties of expected

improvement algorithms.

Algorithms which employ the ISC (3.10) are collectively known as EGO-type
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algorithms, after the Efficient Global Optimization (EGO) algorithm [56] which pop-

ularized the EI criterion. EGO-type algorithms seek the next iterate using a one-step

lookahead method by maximizing EI:

x(k+1) = arg max
x∈A

EI(x) (3.13)

Under certain conditions, (3.13) converges to the global minimum of any contin-

uous function [69]. The performance of the EGO algorithm on the one-dimensional

test function (B.11) is shown in Figure 26. Initially, EGO wastes function evalua-

tions identifying a local minimum instead of exploring the design space. This is a

consequence of the low uncertainty estimate provided by the model, which has been

by MLE. By the 6th iteration (not shown), EGO has approximated the local min-

imum well and then explores areas outside the local minimum. In the context of

computationally expensive programs, this behavior is unsatisfactory.

Remark 3.2.2 Numerical underflow in EGO

Numerical underflow can occur in the EI criterion when s(·) becomes small. The

arguments in Remark 3.2.1 can be extended to EGO to obtain

EI(x) = s

(
u

2
√
π

∞∑

n=0

(−1)n(2n− 1)!!

2n
a−(2n+1) +

1√
2π

)
exp(−a2) (3.14)

Problem (3.13) can be then solved over the logarithmic space without underflow

problems. 2

The EI criterion eliminates the need to specify a target value yT as in the prob-

ability of improvement. However, this also eliminates control over exploration and

exploitation. If the initial interpolating model is inaccurate compared to the actual

function, EGO would be slow to converge because the user cannot control how much

emphasis to place on the local versus global search in equation (3.12) [110]. Sobester

et al. [110] propose a weighted expected improvement function EI(x;w) where a

58



www.manaraa.com

 

 

−4 −3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

4

5

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

x

lo
g 1

0
E I

(x
)

 

 

−3

−2

−1

0

lo
g 1

0
P
(I
(x
))

EI(x)
P(I(x))
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weighting factor w ∈ [0, 1] shifts the balance between local and global search:

EI(x;w) =





w(ymin − Ŷ )Φ(u) + (1− w)sφ(u), s > 0

0, s = 0
(3.15)

A correction is also required in equation (3.15); when EI(x;w) < 0, the value of

EI(x;w) must be set to 0.

If knowledge of the complexity of the function being minimized is known a priori,

w can be selected accordingly. In the case of a black-box function where no informa-

tion is known, Sobester et al. [110] recommend cycling through the available range of

global-local balances, e.g., w = 〈0.1, 0.3, 0.5, 0.7, 0.9〉.

Schonlau et al. [108] generalize the EI criterion to allow more control over how

global the search will be. The generalized EI includes an integer-valued parameter g.

The larger the value of g, the more globally the algorithm will tend to search. The

generalized improvement is given by

I(x; g) =





sg(u− v)g, u > v, s > 0

0, else
(3.16)

For g = 1, the improvement criterion used by Jones et al. [56], I = (ymin − Y )+, is

recovered. The generalized expected improvement can be written as

EI(x; g) = sg
g∑

k=0

(−1)k
(
g

k

)
ug−kTk (3.17)

where Tk for k > 1 can be computed recursively from

Tk = −φ(u)uk−1 + (k − 1)Tk−2 (3.18)

with initial values

T0 = Φ(u) and T1 = −φ(u) (3.19)
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Figure 26: Selected iterations of the EGO algorithm on test function (B.11).
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3.2.3 Fully Bayesian Expected Improvement

It was demonstrated in §3.2.2 that in the case of deceptive functions, the MLE-based

EGO can waste many function evaluations searching locally due to the underestimated

uncertainty in the GP model. This is because EGO is a two-stage approach, i.e., the

hyperparameters of the GP model are estimated by maximum likelihood and then

plugged into the EI sampling criterion, which is then maximized to obtain the location

of the next observation. Benassi et al. [10] advocate a fully Bayesian (FB) approach

to address this problem.

The development of the fully Bayesian EI criterion follows from §2.2.5. The

conditional EI criterion for this problem can be derived from equation (3.11) with

u , (ymin − µ)/γk:

EI|θ(x) = γk(x)

[
uTηk(u) +

ηk + u2

ηk − 1
tηk(u)

]
(3.20)

where tη(·) and Tη(·) are the standard t density and distribution functions, respec-

tively, with η degrees of freedom. Note that the conjugacy of the inverse Gamma and

normal distributions has made an analytic derivation possible. In general, equation

(2.20) or the more general (2.14) must be approximated [78].

EI|θ(x) is a random variable until a value for θ has been selected. Following the

Bayesian methodology, the uncertainty in θ is marginalized to obtain:

EI(x) = Eθ
[
EI|θ(x)

]

=

∫

θ

EI|θ(x)p(θ|y(k))dθ (3.21)

Note that the plug-in EI criterion of §3.2.2 can be seen as an approximation of

the fully Bayesian criterion (3.21), i.e.,

∫

θ

EI|θ(x)p(θ|y(k))dθ ≈ EI|θ̂(x) (3.22)

which is justified if p(θ|y(k)) is concentrated enough around the maximum likeli-

hood estimates θ̂MLE.
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Remark 3.2.3 Numerical underflow in FB-EGO

The following asymptotic expansion for the t-distribution has been derived in [112]:

Tηk(a) = −(1 + a2/ηk)tηk(a)/a
∞∑

n=0

(−1)n(2n− 1)!!ηnk
(ηk + 2)(ηk + 4) · · · (ηk + 2n)a2n

(3.23)

By substituting a = −u in equation (3.20) and using (3.23), the following expres-

sion for the fully Bayesian EI criterion conditional on θ can be written:

EI|θ(x) =γk(x)

[
−a(1− Tηk(a)) +

ηk + a2

ηk − 1
tηk(a)

]

=γk(x)

[
−(1 + a2/ηk)

∞∑

n=0

(−1)n(2n− 1)!!ηnk
(ηk + 2)(ηk + 4) · · · (ηk + 2n)a2n

(3.24)

+
ηk + a2

ηk − 1

]
tηk(a)

Unfortunately, this expression can only be used when one mode θ is considered,

i.e., equation (3.22). In the fully Bayesian case, equation (3.21) must be used and

there does not appear any way to take advantage of the asymptotic distribution to

search over the log-space. 2

Figure 27 shows the results of fully Bayesian EGO on test function (B.11). In

contrast with the original EGO algorithm, the uncertainty in the hyperparameter θ

and the variance σ2 has been marginalized into the posterior predictive distribution,

resulting in wider confidence bands. This forces the algorithm to search globally at

first instead of locally around ymin.

3.3 One-Stage Methods

3.3.1 One-Stage EGO

Thus far, all the EGO-based algorithms reviewed are two-stage methods, i.e., a surro-

gate model is fit to the sample set and the next sample point is found by maximizing

an ISC. It may seem counterintuitive to solve one global optimization problem by

solving another, but the optimization of the ISC is far easier than that of the original
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y(x) Ŷ (x) observations next point

3 iterations

 

 

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

−1 −0.5 0 0.5 1
−3

−2

−1

0

x

lo
g
1
0
E
I
(x
)
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Figure 27: Selected iterations of the fully Bayesian EGO algorithm on test function
(B.11). Shaded area denotes an uncertainty region of ±2s.
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Ŷ (x)
yT = minx∈A y(x)
observations
test point

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

log `(θ = 0.010174, x(k+1)|y(k), yT ) = −9.7443

x

 

 

y(x)
Ŷ (x)
yT = minx∈A y(x)
observations
test point

Figure 28: Illustration of one-stage methods. Likelihood of yT occurring at the global
minimizer, left; likelihood of yT occurring at some other test point, left.

problem. This is the appeal of two-stage approaches. A drawback is that the ISC

depends on the estimates of the hyperparameters, which may lead to poor decisions.

In contrast, a one-stage method includes the calculation of x(k+1) in the MLE calcu-

lation (2.15), bypassing the dependence on previous hyperparameter estimates. This

is accomplished by assuming that the GP interpolates the point x(k+1) with unknown

function value y(x(k+1)), thereby conditioning the likelihood of the sample set to this

hypothesis. One-stage methods can lead to more accurate computations of x(k+1), but

require the solution of a more difficult auxiliary problem, as well as some heuristic

strategy that assigns values to y(x(k+1)). Figure 28 illustrates the concept of one-stage

methods. A target value yT = minx∈A y(x), i.e., the minimum of the true function, is

selected. In general this is not possible since y(·) and specifically the global minimum

of y(·) is unknown. Two candidate locations x(k+1) are selected and the logarithm of

the conditional likelihood (discussed below) is used as the credibility criterion. The

hypothesis that yT occurs at x(k+1) = x∗, i.e., the global minimizer of y(x), in Figure

28 is more credible than the hypothesis that it occurs at some other test point shown.
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Quttineh and Holmström [91] propose the one-stage EGO algorithm osEGO. The

likelihood function of the observed data conditional upon the hypothesis that ŷ in-

terpolates (x(k+1), yT ) is

`(θ,x(k+1)|y(k), yT ) = (2π)−n/2 |C|−1/2 exp

[
−1

2
(y − Fβ)TC−1(y − Fβ)

]
(3.25)

where

C =K− kk+1k(x(k+1),x(k+1))−1kTk+1 (3.26)

y =y(k) − kk+1k(x(k+1),x(k+1))−1yT (3.27)

F =F− kk+1k(x(k+1),x(k+1))−1fTk+1 (3.28)

The vector kk+1 is k0 augmented with k(x,x(k+1)). Thus, for isotropic covariance

functions with one hyperparameter θ, the problem of determining the x(k+1) becomes

x(k+1) = arg max
θ∈R
x∈Rn

log `(θ,x|y(k), yT )

subject to ci(x) ≥ 0, i = 1, . . . ,m

θ > 0

x` ≤ x ≤ xu

(3.29)

Note that the inequality constraints ci(·) ≥ 0 must now be included in the problem

statement since the maximization is also over x. The strategy from [44] can once again

be used to assign values to yT .

Numerical results [91] indicate that osEGO is able to solve more problems to

global optimality, but requires more function evaluations. This is the cost for the

additional robustness provided by one-stage approaches. Its performance on the test

function (B.11) is shown in Figure 29. The primary disadvantage of osEGO is that

it is still a likelihood-based approach.

3.3.2 Method Of Gutmann

Gutmann [44] employs the following general surrogate modeling technique to develop

a global optimization algorithm. Let A be the linear space of functions and assume
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y(x) Ŷ (x) observations new points

x

2 iterations

 

 

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1
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Figure 29: Selected iterations of the osEGO algorithm on test function (B.11).
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that for s ∈ A, σ(s) is a measure of the “bumpiness” of s. Assume that the sample

set S has been evaluated on D = {x(1), . . . ,x(k)}. A target value yT is chosen that can

be regarded as an estimate of the minimum of y(x) (see Algorithm 2 for Gutmann’s

method for selecting yT ). For each x /∈ D, let ŷ ∈ A be defined by the interpolation

conditions

ŷ(x(i)) = y(x(i)), i = 1, . . . , k

ŷ(x) = yT
(3.30)

The new sample point x(k+1) is chosen to be the value of x that minimizes σ(ŷ),

x /∈ D. Gutmann 2001 argues that the “least bumpy” curve interpolating S ∪ yT will

give the most reasonable minimum value at x. The algorithm is described next.

Consider a radial basis function φ(·) from (2.37) and d ≥ d0. Let pi(·), i = 1, . . . , p

be a basis of Pdn, the space of polynomials in Rn of degree less than or equal to d,

where p = dim Pdn. Assume x(1), . . . ,x(k) have been chosen to satisfy

q ∈ Pdn and q(xi) = 0, i = 1, . . . , k, =⇒ q , 0 (3.31)

Let the function

sk(x) =
k∑

i=1

λiφ(‖x− x(i)‖) +

p∑

i=1

bipi(x) (3.32)

interpolate S through D. The goal is to determine x(k+1). For a target value yT

and a point x ∈ A \ D, the RBF ŷ(·) that satisfies (3.30) can be written as

ŷ(x) = sk(x) +
(
y(x(k))− sk(x)

)
`k(ξ,x) (3.33)

where `k(ξ,x) is the radial basis function solution to the interpolation conditions

`k(ξ,x
(i)) = 0, i = 1, . . . , k

`k(ξ, ξ) = 1

(3.34)

Therefore, `k(ξ,x) can be expressed as

`k(ξ,x) =
k∑

i=1

αi(ξ)φ(‖x− x(i)‖) + µk(ξ)φ(‖x− x(i)‖) +

p∑

i=1

bi(ξ)pi(x) (3.35)
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Let

u(ξ) = [φ(‖ξ − x(1)‖), . . . ,φ(‖ξ − x(k)‖)]T

and

π(ξ) = [p1(ξ), . . . , pp(ξ)]
T

Then, the coefficients of `k(ξ,x) are defined by the equations




Φ u(ξ) P

u(ξ)T φ(0) π(ξ)T

P T π(ξ) 0p×p







α(ξ)

µn(ξ)

b(ξ)




=




0k

1

0p




(3.36)

where α(ξ) = [α1(ξ), . . . ,αk(ξ)]
T ∈ Rk, b(ξ) = [b1(ξ), . . . , bp(ξ)]

T ∈ Rp,µk(ξ) ∈ R,

and 0k and 0p denote the zero column vectors in Rk and Rp, respectively. Gutmann

uses the square of the semi-norm 〈ŷ, ŷ〉 of the interpolant (3.35) as the measure of

“bumpiness” and derives the formula

〈ŷ, ŷ〉 = 〈sk, sk〉+ (−1)d0+1µk(ξ)
(
yT − sk(ξ)

)2
(3.37)

with integer d0 ≥ 1. Define the function gn : A \ D → R as the difference

gk(ξ; y
T ) = 〈ŷ, ŷ〉 − 〈sk, sk〉 = (−1)d0+1µk(ξ)

(
yT − sk(ξ)

)2
(3.38)

which is nonnegative. Since 〈ŷ, ŷ〉 is independent of ξ, the required minimization

of 〈ŷ, ŷ〉 and the minimization of gk(ξ; y
T ) are equivalent. The choice of yT determines

the location of x(k+1). If minξ∈A sk(ξ) ≤ yT ≤ maxξ∈A sk(ξ), then gk(ξ; y
T ) = 0 can be

achieved and the algorithm will search locally near existing sample points. However,

if yT ≤ minξ∈A sk(ξ), then x(k+1) will search more globally. In particular, the choice

yT = −∞ requires the minimization of the function (−1)d0+1µk(ξ), which leads to

a global search in A. The RBF-based global optimization algorithm (RBF-G) by

Gutmann is listed in Algorithm 22.

2There are several heuristic intricacies in the target selection system which have not been outlined
here; see [44, 98] for details
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Remark 3.3.1 The function gk is infinitely differentiable on A \ D but it is not

defined at the interpolation points. If yT = minξ∈A sk(ξ) and if sk(x
(i)) > yT , i =

1, . . . , k, then the global minimizers of gk are the global minimizers of sk. Thus one

can minimize sk, which is defined on the whole of A, to obtain x(k+1). If yT <

minx∈A sk(x), however, then, gk(ξ; y
T )→∞ as ξ → x(i), i = 1, . . . , k. Let hk : A→ R

be defined as

hk(ξ; y
T ) =





1/gk(ξ; y
T ), ξ /∈ D

0, ξ ∈ D
(3.39)

The maximization of hk on A is equivalent to the minimization of gk. Further, hk

is infinitely differentiable on A \ D. 2

The following theorem from [44] describes the additional conditions necessary for

convergence of Algorithm 2 by establishing the density of the sequence of generated

points x(k+1).

Theorem 3.3.2 [44] Let φ(r) = r, φ(r) = r2 log r, or φ(r) = r3. Further, choose the

integer d such that 0 ≤ d ≤ n in the linear case, 0 ≤ d ≤ n+1 in the thin-plate spline

case, 1 ≤ d ≤ n + 2 in the cubic case. Let {x(k)}, k ∈ N be the sequence generated

by Algorithm (2), and sk be the RBF that interpolates {(x(i), y(x(i)))}, i = 1, . . . , k.

Assume that for infinitely many k ∈ N, the choice of target value yTk satisfies

min
ξ∈A

sk(ξ)− yTk > τ∆ρ/2
n ‖sk‖∞ (3.42)

where ∆k := min1≤i≤k−1‖x(k)−x(i)‖2, τ > 0, and 0 ≤ ρ ≤ 1 in the linear case and

0 ≤ ρ ≤ 2 in the thin-plate spline and cubic cases. Then the sequence {x(k)}, k ∈ N

is dense in A.

An important result is that Gutmann’s method reduces to the Wiener process-

based P-algorithm in the special case φ(r) = r and n = 1.

Figure 30 illustrates the performance of RBF-G on test function (B.11). A cubic

RBF model is used with linear polynomial regressors, i.e., φ(r) = r3 and d0 = 1.
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Algorithm 2 Gutmann-RBF algorithm.

Pick φ(·) from (2.37) and d ≥ d0. In particular, d0 = 1 in the cubic and thin
plate spline cases, d0 = 0 in the linear and multiquadric cases, and d0 = −1 in the
Gaussian case.

Choose points D = {x(1), . . . ,x(k)} ⊂ A that satisfy (3.31) and generate the initial
sample set S(k) = {y(x(1)), . . . , y(x(k))}.
Set i← 1, k0 = k, and select the cycle length N .

while not converged do
Compute the radial basis function si by solving system (2.39).
Let α be a permutation of {1, . . . , k} such that y(x(α(1))) ≤ · · · ≤ y(x(α(k))).
Select target values yT according to:

yTi = min
x∈A

si(x)− wk
(
y(xα(ik))−min

x∈A
si(x)

)
(3.40)

where

wk =

(
mod(N − (k − k0),N + 1)

N

)2

ik =

{
i, mod(k − k0,N + 1) = 0

ik−1 − b(k − k0)/Nc, else

Compute x(k+1) by solving

x(k+1) = arg max
ξ∈A\D

hi(ξ; y
T ) (3.41)

D(k+1) ← D(k) ∪ x(k+1), S(k+1) ← S(k) ∪ y(x(k+1)), i← i+ 1, k ← k + 1

end while
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Figure 30: Selected iterations of the RBF-G algorithm on test function (B.11) with
φ(r) = r3 and d0 = 1.
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3.4 Other Methods

3.4.1 CORS

Regis and Shoemaker [97] present the Constrained Optimization using Response Sur-

faces (CORS) method which searches for sample points by minimizing the current

surrogate model ŷ(x) subject to the bound constraints x ∈ A and to the additional

constraints that the next iterate should be some minimum distance from all previ-

ously sampled iterates. The point which is as far away as possible from any previously

evaluated point is referred to as the maximin point ∆i, and all sample points in CORS

are required to be at least some fraction βi of ∆i from previously sampled points. For

iteration i, the auxiliary problem is written as:

minimize
x∈A⊂Rn

ŷ(x)

subject to ‖x− x(j)‖2 ≥ βi∆i, j = 1, . . . , k

x ∈ A

(3.43)

where

∆i = max
x∈A

min
1≤j≤k

‖x− x(j)‖2 (3.44)

Values of βi are cycled starting from βi ≈ 1 and ending at βi ≈ 0, i.e., starting

from a global search and ending in a local search. Regis and Shoemaker solve for

the maximin point (3.44) by using a dense space-filling design and selecting the point

that is farthest from any previously evaluated points. The auxiliary problem (3.43) is

solved using a standard gradient-based optimizer. Regis and Shoemaker implement

CORS with a RBF model as the surrogate model (termed CORS-RBF) and test two

different cycles for β,

SP1 = 〈0.95, 0.25, 0.05, 0.03, 0〉 and SP2 = 〈0.9, 0.75, 0.25, 0.05, 0.03, 0〉

Results [97] indicate that cycle SP1 is superior to SP2.

Figure 31 illustrates the performance of the CORS-RBF algorithm on test function

(B.11). A cubic RBF model is used with linear polynomial regressors, i.e., φ(r) = r3
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and d0 = 1. The attractiveness of CORS is in its simplicity and computational

speed: the surrogate model itself is the ISC and by minimizing the current surrogate

model subject to constraints that balance exploration with exploitation, competitive

performance with more sophisticated algorithms can be achieved. CORS is globally

convergent and independent of the surrogate model chosen. However, CORS is sen-

sitive to the cycle chosen for β and to the surrogate model that is chosen, which may

require extensive testing to obtain satisfactory results.

3.4.2 DIRECT

All algorithms discussed thus far are surrogate model-based algorithms that compute

one update point per iteration by maximizing an ISC which is based on the surrogate

model or surrogate modeling mechanics. The Dividing Rectangles (DIRECT) algorithm

of Jones et al. [53] takes a unique approach to satisfying the competing goals of the

ISC. DIRECT is not a surrogate model-based algorithm; it is a method that, in each

iteration in the solution of problem (NLP), computes one or more iterates using all

possible weights on local versus global search (how this is done will be made clear

shortly).

The bounds on the variables limit the search to an n-dimensional hypercube.

DIRECT begins by trisecting this cube into smaller rectangles, each of which has a

sampled point at its center. Figure 32 shows the first three iterations of DIRECT

on a hypothetical two-variable problem. At the start of each iteration, the space is

partitioned into rectangles. DIRECT then selects one or more of these rectangles for

further search using a selection technique described in the next paragraph. Finally,

each rectangle is trisected along one of its long sides, after which the center points of

the outer thirds are sampled.

The key step in the algorithm is the selection of rectangles, since this determines

how search effort is allocated across the space. As motivation, consider the extremes
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Figure 31: Selected iterations of the CORS-RBF algorithm on test function (B.11)
with φ(r) = r3 and d0 = 1.
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Figure 32: First three iterations of DIRECT on a hypothetical two-variable bound
constrained problem.

of pure global search and pure local search. A pure global search would select one

of the largest rectangles in each iteration in order to explore all parts of the design

space uniformly. A pure local search would sample the rectangle with lowest function

value in an attempt to improve the best solution, but may overlook a larger rectangle

which could contain the global minimum. Selecting a single “best” rectangle would

require a tuning parameter to control the global/local balance, but the algorithm

would be extremely sensitive to this parameter. Due to the competing effects of the

global and local search, it is possible to have multiple “best” solutions, which form a

Pareto frontier between the rectangle’s centerpoint value and the size of the rectangle,

measured by its center-vertex distance. These are the rectangles that DIRECT selects

to sample, and the strategy is illustrated in Figure 33. The performance of DIRECT

on the Branin function (problem B-2) after N = 20 simplex gradients is shown in

Figure 34.
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Figure 33: Pareto-based rectangle selection scheme for Branin function (problem B-2)
after N = 20 simplex gradients.
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Figure 34: Performance of DIRECT on Branin function (problem B-2) after N = 20
simplex gradients.
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CHAPTER IV

METHODS FOR HANDLING NONLINEAR

CONSTRAINTS

This chapter discusses methods for handling nonlinear constraints. Penalty methods

are discussed first, which are popular methods for transforming constrained problems

into unconstrained problems. Penalty methods can be used with any of the surrogate

models reviewed in Chapter 2, although there are certain limitations in the case of

GP models. For GP models, specialized constraint handling techniques have been

developed, which are discussed after the penalty methods. Some additional specific

strategies follow.

4.1 Penalty Methods

Penalty methods attempt to solve the general nonlinear program (NLP) by combining

the constraints and the objective function into a scalar penalty function that weighs

each constraint (or its violation) by a penalty parameter. Some penalty functions ob-

tain a solution to (NLP) as a sequence of unconstrained optimizations that converges

to the solution of (NLP) while others solve (NLP) exactly as a single unconstrained

problem. Some popular methods of each type are reviewed in the literature [75, 117].

A challenge associated with the use of penalty functions is the update of the

penalty parameter(s) µ. Some penalty functions are inexact, i.e., their minimizer is

generally not the same as the solution of (NLP) for any positive value of µ, while

others are exact, which means that for certain choices of the penalty parameter(s),

a single minimization with respect to x can yield the solution of (NLP); see [75,

Theorem 17.3]. Bjorkman and Holmström [15] implement the `1 nonsmooth exact
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penalty function of the general form

φ(x;µ) = y(x) +
∑

i∈E

µi |ci(x)|+
∑

i∈I

µi(−ci(x))+ (4.1)

to solve an expensive global optimization problem. The general framework is

outlined in Algorithm 3 and Figure 35 shows the transformation of a nonlinearly con-

strained problem into an unconstrained problem via (4.1). This approach is adopted

to allow some of the unconstrained algorithms to handle constraints. In particular,

osEGO, RBF-G, and CORS use this formulation.
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Figure 35: Example of `1 nonsmooth penalty function. Original constrained problem,
left; unconstrained problem as a result of applying (4.1), right, with µ1 = 11.53 and
µ2 = 17.81.

It remains to define a strategy for updating the penalty parameter(s) µ. Bjorkman

and Holmström [15] choose µ to scale the objectives and constraints to be of unit order.

However, it appears that the rate of change of the constraints is the more critical

issue [117]. Each constraint must be scaled so that its gradient is of the same order of

magnitude as the gradient of the objective function. This serves two purposes. First,

it ensures that the curvature of φ(·;µ) is not dominated by a single constraint, which

conditions the problem better for gradient-based optimization. Second, it makes

φ(·;µ) less sensitive to µ. Informal testing indicates that setting µ by this strategy
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Algorithm 3 General framework for surrogate model-based global optimization of
nonlinearly constrained problems using penalty function.

Select initial design D(1) = {x(1), . . . ,x(k)} ⊂ A and compute the initial sample sets

S(1) = {y(x(1)), . . . , y(x(k))} and C(1)
j = {cj(x(1)), . . . , cj(x

(k))} for j = 1, . . . ,m

Set i← 1, µj = 0, j = 1, . . . ,m

while not converged do
Evaluate the penalty function (equation (4.1)) on D(i) to obtain Φ(i)

Fit model to D(i) and Φ(i)

Compute the next sample point by solving

x(k+1) = arg max
x∈A

ISC(x;µ)

Update: D(i+1) ← D(i)∪x(k+1), S(i+1) ← S(i)∪y(x(k+1)), C(i+1)
j ← C(i)

j ∪cj(x(k+1))

for j = 1, . . . ,m, Φ(i+1) ← Φ(i) ∪ φ(x(k+1);µ), i← i+ 1, k ← k + 1
Optionally update µj, j = 1, . . . ,m

end while

is sufficient for (4.1) to be exact for most problems, while larger values of µ are

detrimental to the conditioning of the surrogate model. Implementation details are

discussed in §7.4.

The primary disadvantage of using classical penalty methods in Bayesian global

optimization is that these methods do not exploit the uncertainty in the Bayesian

model of (NLP), i.e., they are not Bayesian.

4.2 Bayesian Methods

4.2.1 Method Of Schonlau et al.

Schonlau et al. [108] propose a modification to the generalized improvement function,

equation (3.16), to take the inequality constraints ci(x) ≥ 0 into account. Let Ci(x) ∼

N (Ĉi(x), s2
i (x)) denote the GP model for constraint i, i.e., assume that separate GP

models for the objective and constraints have been constructed using the sample set.
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Then the generalized improvement subject to the constraints can be defined as

Ic(x; g) =





(ymin − Y )g , Y < ymin,Ci ≥ 0, i = 1, . . . ,m

0, otherwise
(4.2)

Here, ymin is defined as the minimum feasible value of the objective among all the

points in the sample set. If the sample set contains no feasible points, the sample

with the least constraint violation can be used and then this value can be switched

to the minimum feasible value as soon as one becomes available. The expected value

of Ic(x; g) can be written as a multidimensional integral of the form

EIc(x; g) =

∫ ∞

0

· · ·
∫ ∞

0

∫ ymin

−∞
(ymin − Y )gp(Y ,C1,C2, . . . ,Cm)dY dC1dC2 · · · dCm

(4.3)

where p(Y ,C1,C2, . . . ,Cm) denotes the joint probability distribution function of

Y ,C1,C2, . . . ,Cm. By assuming that the random variables are statistically indepen-

dent (and hence uncorrelated), equation (4.3) simplifies to

EIc(x; g) = EI(x; g)P(C1 ≥ 0)P(C2 ≥ 0) · · ·P(Cm ≥ 0) (4.4)

which is just the generalized expected improvement for the unconstrained case multi-

plied by the probability of feasibility of each constraint. The probabilities in equation

(4.4) are computed from

P(Ci ≥ 0) = 1− Φ(−ui)

= Φ(ui), i = 1, . . . ,m (4.5)

where ui = Ĉi(x)/si(x). Similarly, the method can be used to extend the P-

algorithm to constrained problems by replacing EI(x; g) in equation (4.4) with P(Y (x) ≤

yT ), resulting in the constrained probability of improvement. Figure 36 shows the

performance of the constrained EI criterion on a multimodal problem with two non-

linear inequality constraints. The global minimum is located to within 1% accuracy
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by the third function evaluation, in addition to the twenty-one maximin LHD samples

used to construct the models.

Since separate GP models must be constructed for the objective and constraints,

poor performance can result when these are fit by MLE. Each model is subject to

the inadequacies of MLE discussed in §sec:inadequacies and poor models can result

for any or all of the functions under this method. When this occurs, nonsensical

sample placement can occur due to the multiplicative nature of the constrained EI

criterion (4.4). The fully Bayesian approach addresses these inadequacies and it is

inferred that the performance of a nonlinearly constrained algorithm employing fully

Bayesian models for the objective and constraints will exhibit superior performance

than likelihood-based approaches.

Remark 4.2.1 Numerical underflow in constrained EI

Equation (4.4) is numerically ill-suited for computer implementation due to the

product of probabilities that may approach 0 for a large portion of A. The results

of Remarks 3.2 and 3.2.2 can be combined to give an expression for the logarithm of

equation (4.4), which can then be maximized without underflow problems. 2
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Figure 36: Performance of the constrained EGO algorithm, equation (4.4). True
function and constraint with initial sample sites (◦) and first three iterates (4).
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4.2.2 Expected Violation

Audet et al. [8] extend the EI concept to constraints by introducing the expected

violation (EV). Define the violation of the constraint GP as

Vi(x) = (−Ci(x))+ , i = 1, . . . ,m (4.6)

The expected violation is then

EVi(x) = E[(−Ci(x))+], i = 1, . . . ,m (4.7)

EI and EV are combined to form the Constrained, Balanced, Local-Global Search

(CBLGS) algorithm. A dense LHD is used to sample the design space and all points

where the EV falls below a user-specified threshold are accepted for calculation of EI.

The expensive function is then evaluated at the points in this set with the highest EI

values. The main drawback with the EV criterion is that it must be used in conjunc-

tion with an improvement-based criterion, otherwise a pure EV-based algorithm will

search for points that are furthest from the constraint boundaries, i.e., points that

minimize the expected violation.

4.3 DIRECT

The unconstrained version of DIRECT was introduced in §3.4.2. The method has

been extended to handle nonlinear inequality constraints [55]; in this research, equal-

ity constraints are handled via the `1 penalty function (equation (4.1)). While the

unconstrained DIRECT algorithm has been thoroughly tested [53, 14, 28, 35, 42], no

results have been found in the open literature that assess the performance of the con-

strained DIRECT algorithm. This method will be included in the competing algorithms

for nonlinearly constrained problems.

The key to handling inequality constraints in DIRECT is to define an auxiliary

function that combines the objective and constraint functions. Let cj(x
(r)) denote
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Figure 37: Graphical interpretation of V (x) at the location arg maxx∈A EV (x) along
with true function and GP regression, top figure; EV (x), bottom figure. The con-
straint is c1(x) = y(x)− 2 ≥ 0. Shaded area denotes an uncertainty region of ±2s.
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the value of constraint j at the midpoint of rectangle r. In addition, let µ1, . . . ,µm be

positive weighting coefficients for the inequality constraints. Finally, assume that the

constrained global minimum value y∗ is known. The nonnegative auxiliary function,

evaluated at the center of rectangle r, is:

φ(x(r);µ, y∗) = max(y(x(r))− y∗, 0) +
m∑

j=1

µj max(cj(x
(r)), 0) (4.8)

This is not a penalty function in the standard sense. For the global minimum to

occur in rectangle r, the auxiliary function must fall to zero starting from its value

φ(x(r);µ, y∗) at the center point. Moreover, the maximum distance over which this

change can occur is the center-vertex distance dr. Thus, to reach the global minimum

in rectangle r, the auxiliary function must undergo a minimum rate of change, denoted

hr(y
∗), given by

hr(y
∗) =

φ(x(r);µ, y∗)

dr
(4.9)

Since it is more reasonable to expect gradual changes than abrupt ones [55], a

reasonable way to select a rectangle would be to select rectangles that minimize

the rate of change hr(y
∗). Of course, this is impractical because y∗ is generally

unknown, but it is possible to select the set of rectangles that minimize hr(y
∗) for

some y∗ ≤ ymin − ε. This assumes that a feasible point has been found. If no feasible

points have been found, the rectangles chosen are such that hr(y
∗ = 0) is minimized,

i.e., the rectangles are chosen where the weighted constraint violations can be brought

to zero with the least rate of change. In the unconstrained case, the strategy reduces

to that in §3.4.2.

For this research, DIRECT has been modified to also handle hard constraints. As-

suming at least one successful (but not necessarily feasible) point exists so far, a failed

value that is returned at some point x(f), f ∈ F is assigned the value

y(x(f))← max
1≤i≤k
i/∈F

y(x(i)) (4.10)
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Inequality constraints, if any, are similarly assigned as

cj(x
(f))← min

1≤i≤k
i/∈F

cj(x
(i)), j = 1, . . . ,m (4.11)

This drives the search away from the infeasible region. In the case where no

successful points have been returned, that point is assigned a very large positive

value, say, 1030, and the inequality constraints are assigned a very large negative

value, say, −1030. Until a successful point is returned, new points are chosen by

selecting rectangles with the largest center-vertex distance, i.e., the search is purely

global. The reader is referred to the references for additional details [53, 55].

4.4 Other Methods

The method of handling nonlinear constraints by setting the ISC to some undesirable

value outside the feasible region has been proposed in the literature [110, 79]. Sobester

et al. [110] propose a simple modification to their weighted expected improvement

function EI(x;w). The criterion is set to zero wherever the approximate constraints

are violated:

EI(x;w) =





w(ymin − ŷ)Φ(u) + (1− w)sφ(u), s > 0, Ĉi ≥ 0, i = 1, . . . ,m

0, otherwise

(4.12)

ymin is taken as the minimum feasible objective value, where feasibility is assessed

on the basis of the approximate constraints. Osborne et al. [79] mention that the

expected minimum criterion (a Bayesian ISC closely related to the EI criterion) can

be extended to nonlinearly constrained problems by setting EM to +∞ at infeasible

locations. The method of constraint handling by setting the ISC to some value outside

the feasible region does not account for the uncertainty in the constraints.

Besides the methods discussed above, there are few local methods that can be used

for black-box optimization. A surface effect ship design problem [61] was originally

solved using SUMT. The augmented Lagrangian method was used to convert the
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constrained problem to an unconstrained problem and the method of conjugate di-

rections [84, 117] was used to minimize the unconstrained problem. A derivative-free

method had to be used because of the technical challenges. The method of conju-

gate directions [84] is perhaps the most efficient of all existing direct local methods

that have proven convergence properties, but its use within a SUMT and multistart

framework may be prohibitively expensive.

M.J.D. Powell has developed a family of derivative-free trust region algorithms

[85, 87, 86, 88, 89] for use on problems that are subject to some of the technical chal-

lenges. The algorithms do not haven proven convergence properties but they work well

in practice. Only the algorithm Constrained Optimization BY Linear Approximation

(COBYLA) [85] is able to directly handle nonlinear constraints. COBYLA constructs

successive linear polynomial approximations to the objective and constraint functions

by interpolation at the vertices of a simplex of n + 1 points and minimizes the ap-

proximations within a trust region at each step.

87



www.manaraa.com

CHAPTER V

ADDITIONAL CONSIDERATIONS

5.1 Experimental Designs

The goal of surrogate model-based global optimization is to focus resources in promis-

ing areas where the global minimum is likely to occur. The influence of experimental

designs was found to have a significant effect on the performance of expensive black-

box global optimization algorithms [91]. In this research, the influence of experimental

designs is investigated to a greater degree. The remaining designs are standard de-

signs that only vary by dimensions; there is no stochastic component in the initial

design thus the designs do not contribute any variability to the algorithm perfor-

mance. The DGS design is problem-specific but has no stochastic component. Three

distinct strategies plus two combination strategies are considered:

1. Deterministic global solver (DGS) A black-box global optimizer such as

DIRECT [53] is utilized for a limited number of function evaluations and the

results are used as the initial set of samples for the surrogate model-based

algorithm. The samples chosen by DIRECT are sequential and only the first three

points are systematically placed; the remaining points are problem specific.

2. Corner point strategy (CPS) This strategy has a fixed number of samples.

For problems with n ≤ 3, the midpoint plus all corners of the bounding box

plus all corners of the half-bounding box {x|1
4
≤ x ≤ 3

4
} on the unit hypercube

are taken, giving 2n+1 +1 samples. For problems with n > 3, a fractional corner

point design (FCP) is implemented to avoid the curse of dimensionality. This

is described next. Assume that the bounding box A has been transformed to

the unit hypercube. Then the lower left corner at (0, 0, . . . , 0) plus the upper
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CPS DGS LHD DGS+FCP LHD+FCP DGS LHD DGS+FCP LHD+FCP

N1 N2

Figure 38: The nine designs from Table 5 illustrated in two dimensions

right corner at (1, 1, . . . , 1) plus all corner points adjacent to (0, 0, . . . , 0) and

(1, 1, . . . , 1) are sampled, giving 2(n+ 1) samples. In two and three dimensions,

FCP is equivalent to sampling all corner points.

3. Maximin LHD Latin hypercube designs are a popular choice for experimental

designs because they evenly sample the design space. Maximin designs attempt

to maximize the minimum distance between samples, thus ensuring an even

spread. The maximin LHDs used in this research are optimal designs obtained

from [116].

4. Combined designs Combinations of the FCP design with either DGS or max-

imin LHD were also tested.

For all designs except CPS, two different numbers of initial points, which are

commonly used in the literature, are considered: N1 = (n + 1)(n + 2)/2 and N2 =

10n + 1 [91], with N1 being the number of points required to fit an interpolating

quadratic polynomial to the data and N2 being a “rule of thumb” from the literature

for the size of space-filling designs. The designs are summarized in Table 5 and

illustrated in Figure 38 in two dimensions.

5.2 Initially Infeasible Designs

If the initial sample does not contain a feasible point, a “Phase I”-type approach can

be employed [110]. In classical optimization this can be accomplished by applying a

minimization algorithm to the constraint violations instead of the original objective
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Table 5: Experimental designs. Five designs are listed with available options
and total combinations.

Acronym Design Size i

CPS Corner point strategy





2n+1 + 1, n ≤ 3

2(n+ 1), n > 3
–

DGS Deterministic global solver Ni 1,2

LHD Maximin LHD Ni 1,2

DGS+FCP DGS + Fractional Corner Points Ni + min(2n, 2(n+ 1)) 1,2

LHD+FCP LHD + Fractional Corner Points Ni + min(2n, 2(n+ 1)) 1,2

function, i.e.,

minimize
x∈Rn

∑

i∈E

|ci(x)|+
∑

i∈I

(−ci(x))+ (5.1)

Once a feasible point has been found, the the original problem can be solved. In

Bayesian optimization the probability of feasibility can be maximized [105]:

maximize
x∈Rn

m∏

i=1

P (Ci ≥ 0) (5.2)

Once a feasible point has been found, an improvement-based ISC can be used

for subsequent iterations. Informal numerical experiments indicate that Phase I is

not required for small problems, as a Bayesian algorithm will automatically search

for feasible points due to the form of equation (4.4). However, it may help to locate

feasible points for larger problems in fewer function evaluations than the constrained

EI criterion alone.

5.3 Missing Data

One of the technical challenges outlined in §1.2 was the existence of hard or hid-

den constraints which may return non-numerical values, e.g., NaN or Inf, or may

cause the black-box routine to exit at approximately the same cost as a successful
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iteration. Neither event poses any difficulty provided that a value for the objective

and constraint functions is available by some other method. Furthermore, for all

the algorithms discussed, future iterates depend only upon past data unlike, e.g.,

quasi-Newton methods which maintain updates throughout iterations. An important

distinction [39] for missing data is whether or not the data is missing at random. If

the data is missing at random it can be ignored, as in the case of an initial sam-

ple set generated by a space-filling design. When the data is missing due to a hard

constraint and is not missing at random, it is necessary to assign a value to the

missing data. One strategy [39] is to assign to the failed point x(f), f ∈ F the value

y(x(f))← Ŷ (x(f)) + s2(x(f)), i.e., to assume its true value is equal to the mean value

Ŷ (x(f)) predicted by the model but penalized by a statistical upper bound s2(x(f)).

After each iteration, a GP model is constructed based on the feasible iterates only

and used to impute the values of the failed past iterations. The goal is to drive the

search away from this region, which is accomplished in two ways: by reducing the

uncertainty around the failed point and by assigning it a large function value.

In the current research, the penalty of s2(·) is changed to s(·) to provide better

control for the magnitude of the penalty. The change prevents the penalty s2(·) from

becoming too large when s(·) > 1, as this may warp the GP model. Additionally,

the following strategy is proposed for the constraint values. By (NLP), a design is

feasible if ci(x) ≥ 0, i = 1, . . . ,m. Thus for x(f), the constraint value of ci(x
(f)) ←

Ĉi(x
(f))− si(x(f)). This will drive the search away from the neighborhood of x(f) due

to infeasibility.

The expressions for y(x(f)) and ci(x
(f)) in the above two paragraphs preserve the

global converge properties of the algorithm. Far from sample sites, i.e., as ‖x −

x(i)‖2 →∞, the predictor approaches the mean value of the iterates, i.e., Ŷ (x)→ β̂,

but the penalized prediction approaches β̂ + s(x). Close to sample sites, i.e., as

‖x − x(i)‖2 → 0, the predictor approaches the observed value, i.e., ŷ(x) → y(x(i)),
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which is necessary for maintaining the asymptotic convergence of improvement-based

algorithms. Similar arguments can be made for the constraint penalization strategy.

Additional strategies which are considered in §9.1 are predictor imputation, i.e.,

y(x) ← Ŷ (x(f)), imputation by maximum (successful but not necessarily feasible)

value, i.e., y(x)← max
1≤i≤k
i/∈F

y(x(i)), and a random update strategy.

5.4 Sampling In The Presence Of Noise

If S is corrupted by output-dependent noise such that the observed values are now

z(x) = y(x) + ε, a noise term εn = δiiθn can be appended to the covariance function,

where δii is the Kronecker delta and θn is the noise variance which is treated as an ad-

ditional hyperparameter. The GP will no longer interpolate the observations; rather,

it will regress them. It is well known that noise corrupted data should be regressed

rather than interpolated because the regression acts as a noise filter. The situation

is illustrated in Figure 39, which shows the drag polar of a NACA 2432 airfoil. The

polar has been calculated using the panel code XFOIL 6.94 [32, 31]. The numerical

simulation is subject to discretization error and incomplete convergence which leads

to noise corrupted results, causing the interpolative GP to behave erratically; the

regression gives a more reasonable fit.

In deterministic experiments, artificial noise may also be added to improve the

conditioning of K. For example, values of θn on the order of 10−6 have been used

in [57]. In this research, a more stringent condition is applied when selecting values

of θn. The value of θn is chosen such that O(θn/max{θi : i = 1, 2, . . . ,n}) ≈ 10−8.

For isotropic covariance functions, this condition reduces to O(θn/θ) ≈ 10−8. This

relation has been observed to work well in numerical experiments and is expressed

in this relative manner to ensure that the when the observations y(k) � 1, the GP

model is not polluted by artificial noise. It is recommended that y(k) be scaled to

O(1) in order to keep the noise level at approximately the the square root of machine
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Figure 39: Drag polar from XFOIL 6.94 for NACA 2432 airfoil discretized into 280
panels at M = 0.100 and Re = 0.200 · 106; observations (open circles), GP mean
interpolator (solid line), GP mean regressor (dashed line), high-resolution XFOIL
calculation (wavy dotted line). Airfoil shown in 1:1 aspect ratio.

epsilon for double precision.

Because a GP regression will no longer interpolate the observations, there will

be a nonzero error at these sites. This leads to the possibility of resampling at

previously sampled locations, which for deterministic experiments results in no new

information and may cause an algorithm to stall. Forrester et al. [38] introduce the

concept of reinterpolation to prevent resampling. Although there is nonzero error

in all sample locations due to noise, because the observations are deterministic, the

notion of error can be redefined to reflect the uncertainty in the result. Zero error at

the sample locations is achieved by constructing a secondary interpolating GP through

the values predicted by the GP regression at the sample locations. Intuitively, the

mean function of the reinterpolation will be identical to the mean function of the

regression GP. This is shown first. Following the development in §2.2.5, the predictor

of the reinterpolation is

µ(x) = β̂ + rT0 R−1(y(k)
r − β̂) (5.3)
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where

β̂ =
1TR−1y

(k)
r

1TR−11
(5.4)

The values y
(k)
r are obtained from the regression mean function as

y(k)
r = β̂r + R(R + Iθn)−1(y(k) − β̂r) (5.5)

Substituting equation (5.5) into equation (5.4) gives

β̂ =
1TR−1β̂r + 1TR(R + Iθn)−1(y(k) − β̂r)

1TR−11

= β̂r +
1T (R + Iθn)−1y(k) − 1T (R + Iθn)−1β̂r)

1TR−11

= β̂r

where the last expression above is obtained by noting that 1T (R + Iθn)−1y(k) =

1T (R + Iθn)−1β̂r. Now, substituting equation (5.5) into equation (5.3) and replacing

β̂ with β̂r yields

µ(x) = β̂r + rT0 R−1(β̂r + R(R + Iθn)−1(y(k) − β̂r)− β̂r)

= β̂r + rT0 (R + Iθn)−1(y(k) − β̂r)

= µr(x)

Thus, the regression mean function and the reinterpolation mean function are

identical and the mean of the regression model may be used as the reinterpolation

mean. The variance of the predictive distribution (2.26) must now be updated to

reflect the condition that the reinterpolation mean interpolates y
(k)
r . Replacing y(k)

in equation (2.25b) with y
(k)
r from equation (5.5) yields, after some basic algebra,

bk,r = b0 +
1

2

[
(y(k))T (R + Iθn)−1R(R + Iθn)−1y(k) −

(
1T (R + Iθn)−1y(k)

)T
β̂
]

(5.6)

The new predictive distribution which now reports zero error at sample sites is

p(y0|y(k), θ) ∼ tηk=2ak

(
µ(x), γ2

k(x) , (bk,r/ak)κ
2(x)

)
(5.7)
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The advantage of this approach is that only the error needs to be updated; there

is no need to recompute the hyperparameters θ and the regression mean µ(x) can

still be used as the reinterpolation mean. The methods are employed within a fully

Bayesian GP model and illustrated in Figure 40 for the NACA 2432 airfoil shown

in Figure 39. Notice that the mean function is the same for both methods, but the

error for the reinterpolation returns to zero at all the observation sites. The expected

improvement (not shown) will also return to zero for all observation sites, thus an

update strategy based on reinterpolation eliminates the possibility of resampling and

preserves the convergence properties of the algorithm.
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Figure 40: Fully Bayesian GP regression without reinterpolation, left; GP regression
and error with reinterpolation, right. Shaded area denotes an uncertainty region of
±2s.

Example 5.4.1 Fully Bayesian regression of noise corrupted observations

There is no difficulty in applying the fully Bayesian approach to problems with noise

corrupted observations. A noise hyperparameter θn is added as discussed in §2.2 to the

prior p(θ) and the predictive distribution (2.29) is computed as usual. This procedure

is illustrated on the airfoil problem from Figure 39. Figure 41 shows the airfoil data,

the fully Bayesian interpolation, and the fully Bayesian regression. Figure 42 shows

the posterior p(θ, θn|y(k)) for a uniform prior p(θ, θn).
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Figure 41: Regression and interpolation of drag polar data from XFOIL 6.94 for
NACA 2432 airfoil using a fully Bayesian approach. Airfoil shown in proper 1:1
aspect ratio.
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Figure 42: Posterior distribution p(θ, θn|y(k)) for airfoil problem.

2

5.5 Stopping Rules

surrogate model-based algorithms do not necessarily make the same assumptions

about the unknown function y(·) as do convergent local optimization algorithms. In

general, different stopping rules are used to terminate surrogate model-based opti-

mization algorithms.

For bound constrained problems, algorithms will typically terminate when the
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current best iterate ymin comes within some prescribed tolerance ε of the global min-

imum value, if this value is known. The conditions (8.3) implement this rule. More

advanced stopping rules for this situation have also been used. The P-algorithm,

for example, terminates when the probability of the evaluation of the global mini-

mum with the given accuracy exceeds some value close to 1 [121, 122]. When the

global minimum value is unknown, other rules must be used which may be particu-

lar to each algorithm. For example, EGO terminates when the relative EI is within

a user-prescribed ε of the current best function value. The advantage of using this

probabilistic stopping rule is that the true minimum of the function does not need to

be known and often it will remain unknown. However, it was discovered in the course

of this research that stopping rules based on the EI criterion can only be used with

interpolation problems. For these problems, the samples serve as control points where

the EI returns to zero and gradually diminishes as more samples are added. For noise

corrupted problems, there are no control points to ensure such behavior. Even with

reinterpolation, the set of reinterpolated values changes from iteration to iteration,

which changes EI. superEGO [105] depends primarily on a function evaluation limit

for termination, but also terminates if N sample points have been generated within

a certain distance of each other. However, this second stopping rule may cause the

algorithm to fail if used with a sampling criterion that tends to search locally in

early iterations. Other stopping criteria include goal attainment, i.e., stopping when

a certain function value has been reached, lower confidence bounding [54, 27], i.e.,

stopping when the lower uncertainty is less than some desired percentage of the pos-

terior variance, and stopping when the cost to evaluate the next sample outweighs the

benefits [13]. All algorithms also employ a function evaluation limit as a secondary

stopping criterion when the primary criterion is not met.

For nonlinearly constrained problems, stopping rules in the literature [10] are

typically based on a function evaluation limit. Some algorithms, e.g., superEGO,
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terminate after some user-prescribed number N of feasible points have been found.

There is a certain degree of arbitrariness required when developing stopping rules

due to the level of constraint violation one is willing to accept in the inequality

constraints. While inequality constraints may always be satisfied for some problems,

equality constraints may never be satisfied to machine accuracy, thus one must accept

a violation or allow a relaxation factor as in equation (1.2).
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CHAPTER VI

METHODOLOGY FOR GLOBAL OPTIMIZATION OF

COMPUTATIONALLY EXPENSIVE DESIGN PROBLEMS

6.1 fBcEGO: Fully Bayesian Constrained Efficient Global Op-
timization

The research thus far is used to develop the specification of a fully Bayesian con-

strained efficient global optimization algorithm, henceforth called fBcEGO. A matrix

of alternatives for the algorithm components is populated and used to downselect the

components (Table 6). The literature review and extensive analysis of the existing

methods thus far has led to the elimination of a large number of alternatives, which

have been grayed out in Table 6. For the initial designs, smaller designs are preferred

because they will allow fBcEGO to start placing samples sooner. Factorial and ran-

dom designs are eliminated due to their large size, and fractional corner point and

DGS designs are retained due to their small size and utility in expensive optimiza-

tion. Maximin LHDs will be tested to obtain a conclusive decision on their utility,

as these designs tend to be large, but lead to globally accurate surrogate models [92],

which may benefit the global optimization algorithm. The surrogate model type was

selected in Chapter 2. For the ISC, the expected improvement was selected for its use

with Gaussian process models and the automatic balance that it provides between

the global and local search. DIRECT was found to be the most efficient ISC subsolver

because it is a global method that only uses function evaluations. This reduces the

precision-related errors that may arise in the maximization problem versus finite dif-

ference gradient-based methods when EI becomes small. Branch & bound methods

are not applicable to the solution of the fully Bayesian EI criterion and multistart
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and evolutionary algorithms require many more function evaluations than DIRECT

to obtain similar performance. For constraint handling, the constrained EI criterion

was shown to be a powerful method for handling the nonlinear constraints. Finally,

the penalized imputation method was selected to address the hard constraints, but

the predictor and maximum value imputation methods will be tested for comparison.

fBcEGO is described in the remainder of this section and a formal algorithm spec-

ification is outlined in §6.2. A step-by-step methodology is proposed in §6.3 which

may help a user employ fBcEGO to solve expensive black-box design problems.

Table 6: Matrix of alternatives for algorithm components.

Component Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5

Initial Design
Fractional

corner point
DGS Maximin LHD Factorial Random

Termination
Relative or

absolute change
Based on ISC

Based on

surrogate model

Function

evaluations
Statistical

Surrogate

model

Gaussian

process

Radial basis

function

Polynomial

response surface

Neural

network

Support vector

regression

ISC
Expected

minimum

Probability

of improvement

Expected

improvement

Minimize

model

Maximize

smoothness

ISC Subsolver Branch & bound
Gradient-based

multistart

Derivative-free

multistart
DIRECT Evolutionary

Constraint

handling
SQP Interior-point Filter Penalty

Probabilistic

criterion

Noise Regression Reinterpolation

Hard

constraints
Random update

Predictor

imputation

Penalized

imputation

Max. value

imputation

The method for selecting hyperparameter priors was outlined and demonstrated

in §2.2.6. The remainder of this section outlines a global optimization algorithm that

is based around this method and also employs some additional techniques derived

from the literature to address all the technical challenges from §1.2. The algorithm is

iterative and exactly one point is selected per iteration. This point will serve as the
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next observation site to be evaluated by the black-box function.

The algorithm begins by evaluating N initial samples from an experimental design,

which will result in N values for the objective function and each of m constraints,

giving N(m + 1) initial values. It is not necessary for all values to be feasible; a

feasibility phase is optional but recommended for larger problems. However, the

number of successful initial samples must satisfy condition (2.28).

The next step is to construct the GP models for the objective and constraints

using the method described in §2.2.3. Recall that a strategy to select the prior p(θ)

was outlined in this section. Hard constraints must also be addressed at this stage

using one of the penalization methods described in §5.3. The next iterate is selected

by maximizing the constrained EI. A gradient-free method is required since it was

not possible to derive an asymptotic expansion to the fully Bayesian constrained EI

(see Remark 3.2.3). DIRECT is preferred for this purpose. The best maximizer of EI

found in this way is then refined using a local solver and evaluated by the black-box

function to give the next observation. The sample sets are updated and the algorithm

repeats in this manner until termination.

6.2 fBcEGO Specification

A description of the global optimization algorithm was given in the previous section.

A detailed specification is outlined here.

1. Initialize

1.1 Select initial design D(1) = {x(1), . . . ,x(k)} ⊂ A

1.2 Compute the initial sample sets S(1) = {y(x(1)), . . . , y(x(k))} and C(1)
j =

{cj(x(1)), . . . , cj(x
(k))} for j = 1, . . . ,m

1.3 Select initial priors p(θ) for Y and Cj for j = 1, . . . ,m

1.4 Set i← 1
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2. Iteration step: While termination condition is not satisfied do:

2.1 Impute failed values: If any points in D(i) have returned failed values for

y(·) or cj(·), construct a GP through the successful sites D \ {x(f)}, f ∈ F

and impute values y(x(f)) ← Ŷ (x(f)) + s(x(f)) and cj(x
(f)) ← Ĉj(x

(f)) −

sj(x
(f)) for j = 1, . . . ,m, respectively, for each failed point x(f)

2.2 Construct models for the objective and constraints

2.2.1 Update priors: Compute p(θ|y(k)) and p(θ|c(k)
j ) for j = 1, . . . ,m

and update p(θ) for the objective and constraints using the strategy

outlined §2.2.3

2.2.2 Select modes: Sort p(θ|y(k)) and p(θ|c(k)
j ) by descending order and

continue with the θ that correspond to the top 99.99% of the mass of

p(θ|y(k)) and p(θ|c(k)
j ), respectively

2.2.3 Fit models: Compute the predictive distributions p(Y |y(k)) and

p(Cj|y(k)) for j = 1, . . . ,m, i.e., fit GP models to S(i) and C(i)
j for

j = 1, . . . ,m through D(i)

2.3 Compute next iterate: Compute the next sample point by solving

x(k+1) = arg max
x∈A

Eθ
[
EI|y(k),θ(x)

]
Eθ
[
Πm
j=1P

(
Cj ≥ 0|θ, y(k)

)]

2.4 Perform expensive evaluation: Perform expensive evaluation y(x(k+1))

2.5 Update: D(i+1) ← D(i) ∪ x(k+1), S(i+1) ← S(i) ∪ y(x(k+1)), C(i+1)
j ← C(i)

j ∪

cj(x
(k+1)) for j = 1, . . . ,m, i← i+1, k ← k+1, ymin ← minx∈A,1≤i≤k y(x(i)),

{i : i /∈ F , cj(x
(i)) ≥ 0, 1 ≤ j ≤ m, 1 ≤ i ≤ k}

6.3 Methodology

The methodology for global optimization of computationally expensive design prob-

lems is outlined in this section. A flowchart of the complete methodology including
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fBcEGO is depicted in Figure 43.

6.3.1 Step 1: Formal Problem Statement

The first step in the methodology is to provide a formal problem statement for fBcEGO.

This requires identification of the following information: the design variables x and

their lower and upper bounds x` and xu, respectively; the objective function y(·); the

equality and inequality constraints ci(·), i ∈ E and i ∈ I, respectively. If bounds on

x are unknown, they should be determined using some method that does not require

evaluation of the expensive function y(·). For instance, in a geometry design problem,

the space may be bounded by eliminating regions corresponding to nonsensical ge-

ometries. In other cases, bounds may be defined by customer requirements. If there

is no inexpensive method to determine the bounds, then small space-filling designs

may be used to explore A. These evaluations can then be used in the initial design

D(1) and no function evaluations are wasted.

The black-box design problem must be linked to fBcEGO. Typically, a design pro-

gram will read inputs from a file or the command line, and write outputs to the

screen or a file. A wrapper may be required in order to create an accessible method.

These implementation details are left to the user. Once the required information is

collected, the problem is described in the form:

minimize
x∈Rn

y(x)

subject to ci(x) = 0, i ∈ E

ci(x) ≥ 0, i ∈ I

x` ≤ x ≤ xu

(6.1)

This problem is explicitly written with the equality constraints because fBcEGO

internally converts these to two inequality constraints.
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6.3.2 Step 2: Select Initial Design

Next, an initial design must be supplied. Some recommendations are made based

on the results in Chapter 8.2. In general, smaller initial designs result in better

performance because the algorithm is allowed to intelligently place samples sooner.

Any function evaluations made in the past can be included in the initial design.

6.3.3 Step 3: Select Stopping Criteria

Stopping criteria were discussed in §5.5 and are automatically determined based on

the information given to the algorithm, but the user must always supply a function

evaluation budget. In some cases, this may be the only stopping criterion.

6.3.4 Step 4: Select Covariance Function

The last piece of information required before the algorithm can execute is the co-

variance function. Some recommendations are given in §8.6 based on the level of

information known about the problem. In general, if nothing is known about the

problem or if it is known that the problem is mildly nonsmooth, the isotropic SE

covariance function should be used. Other options exist to encapsulate prior infor-

mation. A poor choice for the covariance function can degrade performance.

6.3.5 Step 5: Execute fBcEGO

From an implementation perspective, the minimal inputs to fBcEGO are the black-box

function which takes x as the input and outputs y(x) and cj(x), j = 1, . . . ,m, the

initial design x(k), the number of equality constraints, the number of inequality con-

straints, and the bounds of x. Stopping criteria, covariance functions, and subsolvers

for the ISC maximization may also be specified; otherwise, fBcEGO uses some default

options.

With this information in hand, fBcEGO can be executed. It is assumed that the

user has no knowledge about the hyperparameters for the design problem and thus
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does not need to modify the assumptions placed on the priors. The method for

selecting the hyperparameter priors builds them automatically. The outputs of the

algorithm are x∗, y∗, x(k), y(k), c
(k)
j for j = 1, . . . ,m, the equality constraint violation

history, the indices of the failed iterations, and a structure that encapsulates the GP

model for visualization.

6.3.6 Step 6: Visualization & Analysis

When fBcEGO terminates, the design space may be visualized through a number of

methods available in the literature [56, 77, 50]. These may be application specific

and details are left to the user. In general, because the goal of surrogate model-based

global optimization algorithms is to focus resources in promising areas, the model will

be most reliable in minima where the samples are concentrated. In practice however,

after a large number of function evaluations, fBcEGO will have explored the design

space in a space-filling manner due to the contribution of the uncertainty s(·) to the

EI criterion.

An important part of this step is for the user to determine if fBcEGO needs to be

executed again. For example, the best solution that was found may have been on the

boundary of the design space, in which case the user may wish to return to Step 1

to expand the bounding box and continue the search for better solutions. This does

not pose a problem for fBcEGO since surrogate model-based methods only depend

on function evaluations made in the past. This is in contrast to, e.g., quasi-Newton

methods which maintain updates of the Hessian matrix that are lost if the algorithm

is restarted. Because of the dependence on past function evaluations, the user may

return to any step of the methodology to make changes. The covariance function can

be changed, the stopping criteria can be changed, and for some design problems, if

Step 1 is written correctly, the constraints can be relaxed or a new problem can be

written altogether without losing any previous work. Design problems that have this
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property are those that report values of some performance parameter rather than

values for the constraint violation. The constraint function is then constructed using

this value, e.g., if the value of some response f(x) is reported by the design code, a

normalized constraint c(x) with an upper limit fu can be written as

c(x) = 1− f(x)

fu
≥ 0 (6.2)
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Figure 43: Methodology flowchart. Steps of the methodology (left) and fBcEGO

(right). The iterative step from Step 6 to Step 5 is optional.
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CHAPTER VII

HYPOTHESIS & TESTING PLAN

7.1 Research Questions & Hypotheses

The primary research objective was to solve problem (NLP) subject to the technical

challenges in §1.2. The primary research question was posed in §1.3. This section

presents the primary hypothesis of this research. A set of low-level research questions

regarding specific, isolated aspects of fBcEGO are posed, which are refined versions of

the questions in §1.3. Subhypotheses are presented as potential answers to each low-

level research question. Test problems, competing algorithms, and test metrics are

described, which are used to design experiments in §7.6 that will be used to evaluate

each subhypothesis.

Primary Hypothesis

Within the context of surrogate model-based global optimization, an algorithm

employing fully Bayesian GPs to model the objective and constraint functions

and using a fully Bayesian constrained EI criterion as the ISC will solve a larger

percentage of NLP-type problems in fewer function evaluations than the state-of-

the-art methods found in the literature.

The hypotheses were derived based on the observations thus far. The first hypoth-

esis deals with initial designs in surrogate model-based global optimization algorithms.

The second hypothesis deals with the performance ISCs on bound constrained prob-

lems, i.e., when no nonlinear constraints are present. The third hypothesis deals with

constraint handling techniques for nonlinear constraints. The fourth hypothesis deals
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with noise corrupted observations. The fifth hypothesis deals with nondifferentiabili-

ties that may arise in design problems and how a surrogate model can address these.

The sixth hypothesis deals with imputation methods for assigning values to failed

iterations.

Research Question 1: How does the initial design affect the performance of algo-

rithms in terms of number of simplex gradients Np,s required to solve problems to

within some accuracy ε?

Hypothesis 1: Smaller initial designs with points placed by DIRECT and augmented

with a fractional corner point design, i.e., design that includes only some of the cor-

ners, will enable algorithms to solve more problems in fewer median simplex gradients

than the same algorithms employing other systematic or nonsystematic initial designs.

Research Question 2: Within the context of GP-based global optimization, what

ISC has the highest potential to obtain the largest reduction in the function values of

computationally expensive black-box problems under budget constraints? How does

the performance of non-GP-based algorithms compare?

Hypothesis 2: An algorithm employing the fully Bayesian EI criterion will solve more

bound constrained problems than any other state-of-the-art algorithm for bound con-

strained problems. The accuracy relative to y∗ is preferred versus the reduction in

function value as the test metric because the reduction must be measured from some

datum value, which may mask the true performance of the algorithm if the datum

value is large. Bayesian algorithms are expected to perform better than non-Bayesian

algorithms.
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Research Question 3: Within the context of GP-based global optimization, how

should nonlinear constraints be handled such that the resulting algorithm will solve

more problems to a higher degree of accuracy given a budget? How does the perfor-

mance of non-GP-based constraint-handling methods compare?

Hypothesis 3: An algorithm employing a fully Bayesian constrained EI criterion will

solve more nonlinearly constrained problems to a higher degree of accuracy given a

budget than any other state-of-the-art algorithm. An algorithm based on this ISC

will also attain the lowest equality constraint violation when the budget is exhausted.

Bayesian constraint-handling techniques are expected to perform better than non-

Bayesian techniques.

Research Question 4: What strategy or strategies can be used to handle observa-

tions which have been corrupted by deterministic noise?

Hypothesis 4: An algorithm that employs a fully Bayesian GP regression strategy to

model noise corrupted functions and a fully Bayesian EI criterion to search them will

solve more noise corrupted problems to a higher degree of accuracy under a given

budget and noise level than any competing algorithm.

Research Question 5: If a problem is believed to be nonsmooth, i.e., exhibits non-

differentiable subspaces, how can this belief be included in a surrogate model-based

algorithm? What if this belief is incorrect?

Hypothesis 5: A fully Bayesian algorithm that employs an isotropic nonsmooth co-

variance function with a fully Bayesian EI criterion as the ISC with will solve more

nonsmooth problems than any other state-of-the-art algorithm employing nonsmooth
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basis functions. Algorithms that employ smooth basis functions to solve smooth prob-

lems will outperform algorithms that employ nonsmooth basis functions for the same

problems.

Research Question 6: When hard constraints are encountered, how should the

failed values be imputed such that subsequent iterations are more likely to be suc-

cessful?

Hypothesis 6: A fully Bayesian algorithm that employs a penalized imputation method

to handle hard constraints will attain a lower function value for practical optimization

problems with hard constraints under a given budget and also result in a larger num-

ber of successful iterations than the same algorithm employing predictor imputation

or maximum value imputation.

7.2 Testing Plan

The following systematic plan, adopted from [9], will be used to study the behavior

of algorithms and to evaluate the subhypotheses in the previous section:

1. Select test problems that address specific technical challenges:

� Noise-free bound constrained problems

� Noise-free nonlinearly constrained problems

� Noise corrupted problems

� Nonsmooth problems

2. Select competing algorithms for each problem set

3. Select test metrics

4. Create test matrices
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5. Specify the experiments required to evaluate the hypotheses

6. Apply proposed algorithm to aircraft design problem

7.3 Test Problems

There is no generally accepted set of test problems for benchmarking optimization

algorithms because no finite set is exhaustive. For local optimization, standard sets of

test problems such as the CUTE collection [17] or the Hock-Schittkowski collection [49]

have been used extensively in the literature. Global optimization test problem sets are

often custom sets of problems selected from the literature; the most comprehensive

collection to date is found in [37]. A set of test problems must be selected such that (a)

no bias is induced towards a particular algorithm, (b) each problem remains within

the scope of the algorithm, and (c) the set is as exhaustive as possible within the scope

of the algorithm. Requirement (c) can be implemented by devising a classification

scheme for optimization problems. Some candidate classifications can be found in

[114, 37, 83], but these consist of a small number of categories totaling less than five

and are not detailed enough.

The classification scheme in [49] is adapted for this research. The following string

of letters and numbers is used to classify the test problems:

OCD-K-s-n-mE -mI-b (7.1)

The classification string (7.1) takes the admissible letters and integers given in Table

7. The global optimization test problem set used for this research is compiled from

[59, 36, 37]. The bound constrained and nonlinearly constrained test problems are

summarized in Tables 8 and 9. These problems are chosen to emulate characteristics

of design problems, i.e., nonlinearity, nonconvexity or unknown convexity properties,

and for the nonlinearly constraint problems, at least one active nonlinear constraint

was present. The test problem statistics for these sets are summarized graphically
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in Figures 44 – 46. In Figure 46 the independent variable is the equivalent number

of inequality constraints, i.e., the sum of all inequality constraints plus twice the

number of equality constraints. This is because an equality constraint is handled as

two inequality constraints in the formulation of fBcEGO.

Remark 7.3.1 The use of inexpensive problems to test algorithms devel-

oped for expensive problems

The test problems are analytical problems with a negligible cost per function eval-

uation when compared with the analytical effort of one iteration of the competing

algorithms (§7.4). However, this research is to develop an algorithm for expensive

problems. Function evaluations are a natural metric of performance for benchmark-

ing derivative-free algorithms when the analytical work of the algorithm is negligible

compared with the cost of one function evaluation. Thus, for testing purposes, the

computational time of the design problem does not factor into the performance and

inexpensive functions can be used. A situation can be envisioned where an expensive

function is tested and time is sped up during the evaluation period without having

any effect on the results. 2

The behavior of the algorithms on nonsmooth problems is also of interest, since

it was stated in the technical challenges that some design problems may exhibit C0

continuity. One way to derive nonsmooth problems is to modify the bound constrained

problems such that yps(x) = |y(x) + c|+ ‖Ax− b‖1, where c is a constant that shifts

y(x) such that its range contains both positive and negative values, A is a diagonal

matrix of coefficients aii on xi, i = 1, . . . ,n, and b is an n × 1 column vector of

constants. These problems are continuous but contain nondifferentiable subspaces.

There is no guarantee that |y(x) + c| has a unique minimizer, even if y(x) has a unique

minimizer. This was a challenge particular to the derivation of nonsmooth problems

from their continuously-smooth counterparts. Nonsmooth problems were still derived

from the bound constrained problems in Table 8, but the bound constrained problems
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required considerable modification through the term ‖Ax − b‖1 to ensure that only

a finite number of global minimizers existed. The nonsmooth set is summarized in

Table 10 and listed in Appendix A.3. Figure 47 shows test problem NS-3.

The fourth class of test problems are bound constrained problems with deter-

ministic noise. The source of noise in noise corrupted design problems is due to the

repeatable discretization and/or convergence error produced by a numerical simula-

tion. For example, Newton’s method might be used to obtain a solution to a nonlinear

system of equations, and depending on the initial guess and the problem, there will be

some error within a desired tolerance. An example is illustrated below. The square

roots of all integers between one and one hundred (inclusive) are computed using

Newton’s method. The nonlinear system to be solved is

f(x) = x2 − x0 = 0 (7.2)

where x0 is the integer for which the square root is desired and x is the square root.

The initial point is chosen as the approximation 1 + 1
2
(x0 − 1), which is the Taylor

expansion of the square root function to two terms about x0 = 1. The tolerance

value used to terminate Newton’s method is ε = 0.01, which is used as both the

absolute and relative tolerance. The error between the Newton solution and the true

square root (taken using MATLAB’s sqrt function with double precision) is plotted

in Figure 48. The figure shows that the absolute error decreases with increasing x0

and the relative error remains somewhat constant. In theory, the relative error can

grow with x0, but this behavior will also depend on the solution method. In design

problems, the relative error is typically used as the termination criterion, since it may

not always be feasible to obtain a solution to low absolute error. It is also apparent

that the error oscillates at a frequency which is a function of x0. This type of behavior

is exhibited in design problems that use iterative methods, as shown in Figure 41 (p.

96). Based on these observations, noise corrupted problems are defined as follows
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[71]:

yn(x) = (1 + εnφ(x))y(x) (7.3)

where εn is the relative noise level and the noise function φ : Rn → [−1, 1] is

defined in terms of the cubic Chebyshev polynomial T3(·) by

φ(x) = T3(φ0(x)), T3(α) = α(4α2 − 3) (7.4)

where

φ0(x) = 0.9 sin(100‖x‖1) cos(100‖x‖∞) + 0.1 cos(‖x‖2) (7.5)

The selected noise function combines high and low frequency oscillations and the

resulting noise corrupted problem yn(·) exhibits noise that increases with increasing

|y(·)|, characteristic of the deterministic noise in design problems. Figure 49 shows

yn(x) with εn = 0.001 and y(x) = 1 + 1
2
‖x − x0‖2

2 with x0 = [0.5, 1]T . The noise

corrupted problem set is summarized in Table 11 and listed in Appendix A.1.
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Table 7: Test problem classification scheme of Hock and Schittkowski [49] correspond-
ing to classification string (7.1)

O Objective function

C Constant
L Linear
Q Quadratic
S Sum of squares
P General polynomial
G General nonlinear

C Constraint functions (highest degree)

U Unconstrained
B Bounds
L Linear
Q Quadratic
P General polynomial
G General nonlinear

D Regularity of the problem

R Regular
I Irregular

K Information about the solution

T Exact solution known (theoretical problem)
R Exact solution unknown (design problem)

s Serial number within class OCD-K
n Number of variables
mE Number of equality constraints
mI Number of inequality constraints
b Number of bound constraints
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Table 8: Condensed list of bound constrained global optimization test problems from
Appendix A.1.

Problem name Abbreviation OCR K s n mE mI b
1 Schubert problem SCHUBERT GBR T 1 1 0 0 2
2 Branin function BRANIN GBR T 2 2 0 0 4
3 Camel back 3 CAMEL3 PBR T 1 2 0 0 4
4 Camel back 6 CAMEL6 PBR T 2 2 0 0 4
5 Dixon & Price function DIXONPR PBR T 3 2 0 0 4
6 Goldstein & Price function GOLDPR PBR T 4 2 0 0 4
7 Modified Langerman Problem MLANGMN2 GBR P 3 2 0 0 4
8 Modified Rosenbrock function MROSEN PBR T 5 2 0 0 4
9 Paviani Problem PAVIANI2 GBR T 4 2 0 0 4
10 Shekel’s foxholes SHEKELF GBR P 5 2 0 0 4
11 Gulf R&D problem GULFRD SBR T 1 3 0 0 6
12 Hartman 3 HARTMAN3 GBR T 6 3 0 0 6
13 Shekel 5 SHEKEL5 GBR T 7 4 0 0 8
14 Shekel 7 SHEKEL7 GBR T 8 4 0 0 8
15 Shekel 10 SHEKEL10 GBR T 9 4 0 0 8
16 Michalewicz Problem MICH5 GBR P 10 5 0 0 10
17 Paviani Problem PAVIANI5 GBR T 11 5 0 0 10
18 Hartman 6 HARTMAN6 GBR T 12 6 0 0 12
19 Michalewicz Problem MICH10 GBR P 13 10 0 0 20
20 Paviani Problem PAVIANI10 GBR T 14 10 0 0 20

Table 9: Condensed list of nonlinearly constrained global optimization test problems
from Appendix A.2.

Problem name Abbreviation OCR K s n mE mI b
1 Constrained Schubert 1 CSCHUB1 GGR T 1 1 0 1 2
2 Constrained Schubert 2 CSCHUB2 GGR T 2 1 0 2 2
3 Hock & Schittkowski 9 hs009 GLR T 1 2 1 0 4
4 Hock & Schittkowski 12 hs012 QQR T 1 2 0 1 4
5 Hock & Schittkowski 14 hs014 QQR T 2 2 1 1 4
6 Hock & Schittkowski 19 hs019 PQR T 1 2 0 2 4
7 Multiple disconnected regions mdc LQR T 1 2 0 1 4
8 Mystery function MYST GGR T 3 2 0 1 4
9 Hock & Schittkowski 26 hs026 PPR T 1 3 1 0 6
10 Hock & Schittkowski 32 hs032 QPR T 1 3 1 1 6
11 Hock & Schittkowski 33 hs033 PQR T 2 3 0 2 6
12 Phase and chemical equilibrium CHEMEQ GPR P 1 3 2 0 6
13 Test problem 4 test4 LGR T 1 3 1 3 6
14 Hock & Schittkowski 46 hs046 PGR T 1 4 2 0 8
15 Hock & Schittkowski 81 hs081 GPR P 2 5 3 0 10
16 Hock & Schittkowski 83 hs083 QQR P 3 5 6 0 10
17 CSTR sequence design CSTR LGR P 2 6 4 1 12
18 Hesse function HESSE QQR T 4 6 0 6 12
19 Hock & Schittkowski 87 hs087 GGI P 2 6 0 4 12
20 Hock & Schittkowski 100 hs100 PPR P 2 7 0 4 14
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Table 10: Condensed list of bound constrained nonsmooth global optimization test
problems from Appendix A.3.

Problem name Abbreviation OCR K s n mE mI b
1 One-dimensional problem NS1D PBR T 1 1 0 0 2
2 Two-dimensional problem 1 NS2D1 GBR T 1 2 0 0 4
3 Two-dimensional problem 2 NS2D2 GBR T 2 2 0 0 4
4 Two-dimensional problem 3 NS2D3 GBR T 3 2 0 0 4
5 Two-dimensional problem 4 NS2D4 GBR T 4 2 0 0 4
6 Two-dimensional problem 5 NS2D5 GBR T 5 2 0 0 4
7 Two-dimensional problem 6 NS2D6 GBR T 6 2 0 0 4
8 Two-dimensional problem 7 NS2D7 GBR T 7 2 0 0 4
9 Nonsmooth Hartman 3 NSHART3 GBR T 8 3 0 0 6

Table 11: Condensed list of bound constrained noise corrupted global optimization
test problems from Appendix A.1.

Problem name Abbreviation OCR K s n mE mI b
1 Schubert problem SCHUBERT GBR T 1 1 0 0 2
2 Branin function BRANIN GBR T 2 2 0 0 4
3 Camel back 3 CAMEL3 PBR T 1 2 0 0 4
4 Camel back 6 CAMEL6 PBR T 2 2 0 0 4
5 Dixon & Price function DIXONPR PBR T 3 2 0 0 4
6 Goldstein & Price function GOLDPR PBR T 4 2 0 0 4
7 Paviani Problem PAVIANI2 GBR T 3 2 0 0 4
8 Shekel’s foxholes SHEKELF GBR P 4 2 0 0 4
9 Gulf R&D problem GULFRD SBR T 1 3 0 0 6
10 Hartman 3 HARTMAN3 GBR T 5 3 0 0 6
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Figure 44: Number of bound constrained test problems of dimension n.
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Figure 45: Number of nonlinearly constrained test problems of dimension n.
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Figure 46: Size of nonlinearly constrained test problems in terms of equivalent number
of inequality constraints.
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7.4 Competing Algorithms

Two main sets of competing algorithms will be considered: one set for bound con-

strained problems and one set for nonlinearly constrained problems. These algorithms

are the state-of-the-art algorithms for surrogate model-based global optimization and

were discussed in Chapter 3. The competing algorithms for the bound constrained

problems are described in Table 12. Table 13 lists the competing algorithms for the

nonlinearly constrained problems. Of the seven competing nonlinearly constrained

algorithms, three employ the `1 smooth penalty function 4.1 to handle constraints:

osEGO, RBF-G, and CORS-RBF. DIRECT has its own method for handling inequality

constraints but equality constraints are included using the `1 smooth penalty function.

The remaining algorithms handle constraints directly in their ISC.

The algorithms for the noise corrupted problems are listed in Table 14 and are

based on the bound constrained algorithms. There is no straight-forward way to

extend RBFs to the case of noise corrupted data [39], thus RBF-G is omitted and

CORS-RBF must be substituted with CORS-GP, i.e., the CORS framework will

employ a GP instead of a RBF for the case of noise corrupted problems.

The algorithms for the nonsmooth problems are listed in Table 15 and also based

on the bound constrained algorithms with two options for the basis functions. The

GP-based algorithms will employ the isotropic SE covariance function or the isotropic

Matérn covariance function (equation (2.4)) with smoothness parameter ν = 1. The

RBF methods will employ the linear RBF in addition to the cubic RBF used thus

far. The Matérn covariance function and the linear RBF are capable of modeling

nonsmooth functions.

The ability of a surrogate model to capture nondifferentiable subspaces arises from

the properties of the basis function. Since GPs and RBFs are linear combinations of

basis functions, if the basis function has a derivative that is undefined at some point

x, the surrogate model will be nondifferentiable at x. Consider the one dimensional
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case, i.e., x ∈ R. The Matérn covariance function (2.3) with ν = 1 is a function

of |x− x?|. Thus, a GP model that employs this covariance function is continuous

but not differentiable at x?. Similarly, the linear RBF (2.37) is a function of ‖x −

x?‖2 which has an undefined first derivative at x?. The SE covariance function and

the cubic RBF have derivatives which are defined everywhere and are considered

“smooth” basis functions. Other options exist for the nonsmooth basis functions,

e.g., the power exponential covariance function (2.2) with ph = 1,h = 1, . . . ,n, but

only one option for the smooth class and one option for the nonsmooth class are

considered in this research.

Table 12: Competing algorithms for bound constrained test problems.

Algorithm Basis function Model fitting method ISC

DIRECT – – –

P-algorithm Iso. SE GP MLE P(Y (x) < yT )

EGO Iso. SE GP MLE EI(x)

osEGO Iso. SE GP – log `(θ,x(k+1)|y(k), yT )

RBF-G Cubic RBF Ax = b h(ξ; yT )

CORS Cubic RBF Ax = b Problem (3.43)

fBcEGO Iso. SE GP Proposed Eθ
[
EI|θ(x)

]
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Table 13: Competing algorithms for nonlinearly constrained test problems.

Algorithm Basis function Model fitting method ISC

DIRECT – – –

P Iso. SE GP MLE P(Y (x) < yT )
∏m
i=1 P(Ci(x) ≥ 0)

EGO Iso. SE GP MLE EI(x)
∏m
i=1 P(Ci(x) ≥ 0)

osEGO Iso. SE GP – log `(θ,x(k+1)|y(k), yT )

RBF-G Cubic RBF Ax = b h(ξ; yT )

CORS Cubic RBF Ax = b Problem (3.43)

fBcEGO Iso. SE GP Proposed Eθ
[
EIc|θ(x)

]

Table 14: Competing GP algorithms for noise corrupted test problems.

Algorithm Basis function Model fitting method ISC

P-algorithm Iso. SE GP MLE P(Y (x) < yT )

EGO Iso. SE GP MLE EI(x)

osEGO Iso. SE GP MLE log `(θ,x(k+1)|y(k), yT )

fBcEGO Iso. SE GP Proposed Eθ
[
EI|θ(x)

]

Table 15: Competing algorithms for bound constrained nonsmooth test problems.

Basis function

Algorithm Smooth Nonsmooth Model fitting method ISC

P-algorithm Iso. SE Iso. Matérn, ν = 1 MLE P(Y (x) < yT )

EGO Iso. SE Iso. Matérn, ν = 1 MLE EI(x)

osEGO Iso. SE Iso. Matérn, ν = 1 – log `(θ,x(k+1)|y(k), yT )

RBF-G Cubic RBF Linear RBF Ax = b h(ξ; yT )

CORS Cubic RBF Linear RBF Ax = b Problem (3.43)

fBcEGO Iso. SE Iso. Matérn, ν = 1 Proposed Eθ
[
EI|θ(x)

]
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7.5 Metrics Of Performance

The material in this section is based on [71].

The goal of surrogate model-based global optimization algorithms is to find “good”

solutions to expensive problems, i.e., to provide a significant reduction in the function

value of a problem in as few function evaluations as possible. The performance of an

algorithm can be defined in terms of a performance measure tp,s > 0 obtained for each

problem p ∈ P and each solver s ∈ S in their respective sets. Larger values of tp,s

indicate worse performance. For example, this measure could be the analytical effort

or the number of function evaluations to meet some termination criterion. Func-

tion evaluations are a natural metric of performance for benchmarking derivative-free

solvers when the analytical work of the algorithm is negligible compared with the cost

of one function evaluation. Users with expensive problems typically have some func-

tion evaluation budget to adhere to and are interested in the percentage of problems

that s can solve to a given tolerance ε within τ function evaluations. This is the data

profile and can be written as

ds(τ) =
|{p ∈ P|tp,s ≤ τ}|

|P| (7.6)

As usual, there is some upper bound on the function evaluations allowed for

testing, perhaps because a solver is showing signs of not converging, and tp,s = ∞ if

the convergence criterion is not satisfied within that limit.

The definition (7.6) is independent of the problem dimension n. This is not

realistic because typically, the number of function evaluations needed to satisfy a

convergence criterion grows superlinearly with n. Thus, the data profile of a solver

s ∈ S is redefined as

ds(τ) =
|{p ∈ P| tp,s

n+1
≤ τ}|

|P| (7.7)

The normalizing factor n+ 1 enables interpretation of ds(τ) as the percentage of

problems that can be solved with the equivalent τ simplex gradients, n+ 1 referring
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Figure 50: Notional data profile.

to the number of function evaluations needed to compute a one-sided finite difference

estimate of the gradient. The scaling also prevents problems of low dimension from

dominating the results. A notional data profile for three solvers is depicted in Figure

50. A solver s is said to dominate another solver s? if the data profile of s lies

completely above the data profile of s?, indicating that s solves a larger percentage

of the test problems than s? over all budgets considered. In Figure 50, s1 dominates

s2.

The data profiler 7.6 with a fixed accuracy level ε answers the following questions:

1. If I have a budget of N simplex gradients, which solver is most likely to solve

my problem to an accuracy of ε?

2. What percentage of problems can be solved to an accuracy of ε by a solver s,

i.e., how robust is solver s for this accuracy level?

This type of data profiler also enables a user to study the influence of initial

designs by solving the problems over a number of designs. A drawback of this type

of profiler is that the tests are expensive, as a significant number of runs may not

converge to the desired accuracy within the necessary function evaluation limit (to

prevent the solver from running indefinitely). Furthermore, since a failed run is not
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considered, a user will not know what reduction in function value was obtained over

the course of that run.

An alternative data profile involves fixing the number of simplex gradients al-

lowed, i.e., specifying a budget, and reporting the percentage of problems for which

s obtained an accuracy εp,s of at most τ . This is written as

ds(r) =
|{p ∈ P|εp,s ≤ τ}|

|P| (7.8)

The best value a solver can attain on a problem is εp,s = 0, which means the global

minimum was found exactly. The data profiler 7.8 with a fixed budget N answers the

following questions:

1. If I have a budget of N simplex gradients, which solver is most likely to attain

an accuracy of τ?

2. How reliable is a solver s for a given budget, i.e., what is the worst accuracy

obtained over all problems?

This type of profiler enables a user with a budget to determine what solver is most

likely to attain a τ -global minimizer. Unlike the first profiler, this second profiler

includes all runs in the results, except for nonlinearly constrained problems, which

may fail by not finding a feasible value by the time the budget is exhausted. A

drawback of this profiler is that it will not return the success rate of a solver. In

addition, small initial designs must be used with this profiler so that the initial design

does not exhaust the fixed budget and so the accuracy attained is a result of the solver

and not of a systematically-placed sample.

It is clear that both types of profilers described above report different information.

In some cases, one profiler will be preferred over the other, or both may be used to

evaluate a hypothesis. Naturally, as with any experiment, there may be outliers in

the results. The median and spread of the performance of an algorithm is also of
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interest. For this purpose, box plots will be used to quantify this information and to

identify outliers.

7.6 Experiments & Test Matrices

The experiments which are designed to evaluate the hypotheses in §7.1 are outlined

in this section. The experiments make reference to the information provided thus far

in the chapter. Test matrices for each experiment are given in Figures 51 – 53 and

Table 16.

Experiment 1

Experiment 1.1: Record the simplex gradients Np,s required to solve the bound con-

strained problems (Table 8) using the smooth basis functions listed in Table 15 to

within 1% of the global minimum over the nine initial designs in Table 5. Enforce an

upper limit of N = 50, at which point an algorithm is considered to have failed to

solve a problem.

Experiment 1.2: Record the simplex gradients Np,s required to solve the nonsmooth

problems (Table 10) using the nonsmooth basis functions in Table 15 to within 1% of

the global minimum over the nine initial designs in Table 5. Enforce an upper limit

of N = 50, at which point an algorithm is considered to have failed to solve a problem.

Experiment 1.3: Record the simplex gradients Np,s required to solve the bound con-

strained problems (Table 8) using the nonsmooth basis functions listed in Table 15

to within 1% of the global minimum over the nine initial designs in Table 5. Enforce

an upper limit of N = 50, at which point an algorithm is considered to have failed to

solve a problem.
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Experiment 2

Experiment 2.1: Record the accuracy εp,s attained by the bound constrained algo-

rithms after solving the bound constrained test problems (Table 8) with N = 5, 10,

and 20 simplex gradients starting with FCP initial design.

Experiment 2.2: Record the simplex gradients Np,s required to solve bound con-

strained problems to within 1% and 0.1% of the global minimum over the nine initial

designs in Table 5. Enforce an upper limit of N = 50, at which point an algorithm is

considered to have failed to solve a problem.

Experiment 3

Experiment 3.1: Record the accuracy εp,s attained by the nonlinearly constrained

algorithms after solving the nonlinearly constrained test problems (Table 9) with

N = 5, 10, and 20 simplex gradients starting with FCP initial design.

Experiment 3.2: Record the equality constraint violation
∑

i∈E |ci(x)| attained by

the nonlinearly constrained algorithms after solving the nonlinearly constrained test

problems (Table 9) with N = 5, 10, and 20 simplex gradients starting with FCP

initial design.

Experiment 4: Record the accuracy εp,s attained by the noise corrupted algorithms

(Table 14) after solving the noise corrupted test problems (Table 11) with N = 5, 10,

and 20 simplex gradients and with noise levels εn = 0%, 0.01%, and 1% starting with

the FCP initial design.

Experiment 5

Experiment 5.1: Same as Experiment 1.2.
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Experiment 5.2: Same as Experiment 1.3.

Experiment 5.3: Record the simplex gradients Np,s required to solve the nonsmooth

problems (Table 8) using the smooth basis functions listed in Table 15 to within 1%

of the global minimum over the nine initial designs in Table 5. Enforce an upper limit

of N = 50, at which point an algorithm is considered to have failed to solve a problem.

Experiment 6: Test the performance of fBcEGO on a practical problem with hard

constraints using predictor imputation, penalized imputation, and maximum value

imputation for two different initial designs selected according to the results of Ex-

periment 1. For each method, record the accuracy ε attained after N = 50 simplex

gradients and the percentage of iterates beyond the initial design that failed.
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N = 5

s1 s2 · · · s|S|

1 ε11 ε12 · · · ε1|S|

2 ε21 ε22 · · · ε2|S|
...

...
...

. . .
...

|P| ε|P|1 ε|P|2 · · · ε|P||S|

N = 10

s1 s2 · · · s|S|

1

2

...

|P|

N = 20

s1 s2 · · · s|S|

1

2

...

|P|

Figure 52: Test matrices for Experiment 2.1 and Experiment 3; for Experiment 3 the
equality constraint violation is recorded in addition to the accuracy attained.

N = 5
εn = 1% s1 s2 · · · s|S|

1

2
...

|P|

εn = 0.01% s1 s2 · · · s|S|

1

2
...

|P|

εn = 0% s1 s2 · · · s|S|

1 ε11 ε12 · · · ε1|S|

2 ε21 ε22 · · · ε2|S|
...

...
...

. . .
...

|P| ε|P|1 ε|P|1 · · · ε|P||S|

N = 10
εn = 1% s1 s2 · · · s|S|

1
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...

|P|

εn = 0.01% s1 s2 · · · s|S|
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2
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εn = 0% s1 s2 · · · s|S|
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N = 20
εn = 1% s1 s2 · · · s|S|
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|P|

εn = 0.01% s1 s2 · · · s|S|
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|P|

εn = 0% s1 s2 · · · s|S|

1
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...

|P|

Figure 53: Test matrices for Experiment 4.
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Table 16: Test matrix for Experiment 6.

Imputation method Initial design Initial failures Subsequent failures ymin

Predictor
Design 1

Design 2

Penalized
Design 1

Design 2

Max. value
Design 1

Design 2
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CHAPTER VIII

RESULTS

8.1 Experimental Setup & Implementation Details

8.1.1 Experimental Designs

The experimental designs used in this research were outlined in §5.1. Specifically,

experiments which are designed to determine the influence of the initial design solve

problems over the nine designs in Table 5. Experiments which determine the accuracy

or equality constraint violation attained on a fixed budget use the FCP design. With

the exception of the problem specific design DGS and its combinations, the designs

are standard and only vary with dimension, i.e., they are not randomized designs such

as those generated by MATLAB’s lhsdesign. Thus, the designs themselves will not

generate any variability in the results. Points in the initial design which satisfy

‖x(i) − x∗‖2 ≤ 0.01 min
1≤h≤n

(xuh − x`h), i = 1, . . . , k (8.1)

are removed from the initial design. That is, points in the initial design D(1) which

fall within a ball of radius equal to 1% of the smallest dimension of the unnormalized

space A = {x|x` ≤ x ≤ xu} of all the global minimizers x∗ are excluded from D(1).

This is to prevent algorithms from “stumbling upon” the solution.

8.1.2 Model Fitting

For algorithms based on GP models and requiring hyperparameter estimation (P-

Algorithm and EGO), the MLE approach was used within a gradient-based multi-

start framework of 10I + 1 maximin Latin hypercube points plus 2I corners, where

I is the number of hyperparameters; for noise-free problems, I = 2 and for noise
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corrupted problems I = 3. The model fitting problem (problem (2.15)) was reformu-

lated such that the hyperparameters θ were searched over the log-space, eliminating

the nonnegativity constraints θ > 0. The space A defined by the bound constraints

was normalized to the unit hypercube to facilitate the intelligent selection of θ values

for the multistart solution. The initial values for θ satisfied 10−3 ≤ θ0, θ1 ≤ 2 and

10−4 ≤ θn ≤ 0.2. The gradients were computed using equation (2.18). MATLAB’s

fminunc was used as the primary solver.

RBF-G and CORS-RBF used cubic RBF models, which were fit by solving a linear

system of equations, with safeguards to improve conditioning and handle singularities.

8.1.3 Optimization Of Infill Sampling Criteria

For the optimization of the ISC, it was found that a gradient-based multistart strategy

was prohibitively expensive for large n. Thus, DIRECT was used with 100n function

evaluations to maximize the ISC of each algorithm, and a gradient-based solver was

used to refine the best solution found. CORS-RBF used a pre-generated 10, 000 point

LHD to sample the ISC and a gradient-based local solver was used to refine the best

solution.

For the improvement-based algorithms, ISC gradients were computed using central

finite differences; for RBF-G, analytical derivatives for hk(·; yT ) were derived using the

relations in §3.3.2. For CORS-RBF, analytical gradients of the maximin constraints

and the cubic RBF were also provided.

For algorithms that required a surface minimum (P-algorithm, osEGO, and RBF-

G), values of smin were set to the minimum sample value ymin if there were no nonlinear

constraints. If nonlinear constraints were present and no feasible samples were found,

smin was chosen to minimize the `1 inequality constraint violation. The subsolvers

used to maximize the ISC for each algorithm were consistent and deterministic within

each test set and thus contributed no variability to the results.
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8.1.4 Target Values

The P-algorithm, osEGO, and RBF-G require a target value yT which controls the

global-local balance. The approach from [44] is used. This approach is outlined in

Algorithm 2. A single target value is used at each iteration and the value is cycled

such that the search starts off fairly global and after a few iterations becomes fairly

local. This cycle repeats until convergence. CORS requires a cycle for the maximin

radius and this cycle was taken as [97]

〈0.95, 0.25, 0.05, 0.03, 0〉 (8.2)

8.1.5 Stopping Criteria

All the experiments in §7.6 either use the accuracy attained as the stopping criterion

or record the accuracy attained after a simplex gradient budget is exhausted. For

bound constrained, noise corrupted, and nonsmooth problems, this stopping criterion

only depends on ymin and y∗:

ε =




|ymin − y∗| / |y∗| , |y∗| > 0

ymin, y∗ = 0
(8.3)

Because a feasible value for ymin = min1≤i≤k y(x(i)) is always available for problems

without nonlinear constraints, this value can be updated at every iteration and thus

experiments which record the accuracy attained after a budget is exhausted will return

no failures. For nonlinearly constrained problems, ymin is updated by the rule

ymin = min
i
y(x(i)), {i : cj(x

(i)) ≥ 0, 1 ≤ i ≤ k, 1 ≤ j ≤ m} (8.4)

There may not be a feasible value of ymin available at each iteration, thus ex-

periments that record the accuracy attained after a budget is exhausted may return

some failures. The equality constraint violation
∑

i∈E |ci(x)| is treated as a secondary

metric for nonlinearly constrained problems, since any relaxation factor as in (1.2) is

arbitrary.
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8.1.6 Design Space Symmetry

It was found that some algorithms could solve the low-dimensional symmetric prob-

lems in one iteration. This is because the FCP initial design is symmetric, which

led to a symmetric surrogate model and hence a symmetric ISC with a maximum

at the center of the design space. To provide a fair comparison for all algorithms,

any symmetries in the design space were removed by applying a linear shift to x.

Test problem NS-3 (Figure 47), for example, required a linear shift to remove the

symmetry.

8.2 Experiment 1: Influence Of Initial Design On Perfor-
mance

Experiments were conducted to determine the effect of the initial design on the per-

formance of each algorithm. Tests were performed on smooth bound constrained

problems using smooth basis functions (Experiment 1.1), on nonsmooth problems us-

ing nonsmooth basis functions (Experiment 1.2), and on smooth bound constrained

problems using nonsmooth basis functions (Experiment 1.3). A total of 348 tests were

performed for each of the nine designs listed in Table 5. All problems were n ≤ 3.

There were no significant differences in the number of successful tests for each design;

these data are presented in Table 17. The results are compiled and presented as a

set of data profiles and box plots in Figure 54. Outliers (represented by crosses) are

taken as data points that fall outside of the range [99]

[Q1 − c(Q3 −Q1),Q2 − c(Q3 −Q1)] (8.5)

with Qi being the ith quartile and c = 1.5.

In terms of performance on the data profile, design 2 (N1 DGS) and design 7

(N2 DGS+FCP) dominate the remaining designs but for different budgets. Thus

if a user has a budget of N ≤ 22, design 2 (N1 DGS) is more likely to solve a

problem to within ε = 1% accuracy, whereas if a user has a budget of 22 ≤ N ≤ 50,
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design 7 (N2 DGS+FCP) is preferred, followed closely by design 5 (N2 LHD). The

upper limit of N = 50 was enforced to prevent algorithms from running indefinitely.

The superior performance of design 2 and design 7 on the data profiler is due to

the fact that both designs utilized the deterministic global solver (DGS) DIRECT

to place initial points intelligently rather than systematically using a static design.

DIRECT only places the first three samples systematically, and then uses this and

all previous information to place new samples sequentially in promising areas. This

result indicates the importance of placing samples intelligently as soon as possible.

In terms of median number of simplex gradients required to solve a problem to

within ε = 1% accuracy, design 2 (N1 DGS) and design 6 (N1 DGS+FCP) exhibit

the best performance. These two designs solved all problems to an accuracy of 1% in

a median value of approximately ten simplex gradients and also exhibit a moderate

inter-quartile range. The performance can be explained in the same manner as in the

previous paragraph.

Design 3 (N2 DGS) and design 7 (N2 DGS+FCP) also incorporate a deterministic

global solver, but their median performance is significantly worse. The difference

between each pair of designs is the number of initial points. The reader is reminded

that N1 = (n+ 1)(n+ 2)/2 and N2 = 10n+ 1. For n ≤ 3, N1 < N2 by a large margin.

Thus, the designs with the lower number of initial points performed better, because

the more sophisticated surrogate model-based algorithms can take over sooner. For

n > 17, N2 < N1 and it is inferred that N2 number of initial samples should be used.

Note the importance of having both the data profiles and the box plots: while design

7 (N2 DGS+FCP) had the worst median performance when taken over all problems,

it dominated the competing designs for 22 ≤ N ≤ 50.

The next part of the analysis involves FCP designs. Designs 6, 7, 8, and 9 are

identical to designs 2, 3, 4, and 5, respectively, but augmented with an FCP design.

It is seen from Figure 54 that there were no significant differences in the location
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Table 17: Successful tests as a function of initial design

Design 1 2 3 4 5 6 7 8 9

Successful tests (out of 348) 268 279 289 269 293 283 303 274 291
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Figure 54: Effect of initial design on performance of algorithms; problems with n ≤ 3
solved to 1% accuracy.

or variation of the performance when a design was augmented with the FCP design.

It was demonstrated in §3.1 that some surrogate model-based algorithms will often

sample the corner points and along the boundary of the design space first because

the uncertainty is greatest in these areas. Thus, including the corner points may save

some analytical time. For problems with hard constraints and/or unknown bounds,

it is recommended that the corner points be included in the initial design. The hard

constraint handling techniques discussed in §5.3 will penalize the corner points if they

return failed iterations, driving the search away from these regions.

With respect to the specifics of this experiment, it was hypothesized in §7.1 that

design 6 would have the best median performance in terms of simplex gradients.

Given what was learned about FCP-augmented designs for surrogate model-based

global optimization, the results support the hypothesis.
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8.3 Experiment 2: Performance Of ISC On Bound Con-
strained Problems

This section presents the results of the competing bound constrained algorithms (Ta-

ble 12) on the bound constrained test problems (Table 8). Tests were performed with

a function evaluation budget of N(n + 1) function evaluations, with N = 5, 10, and

20, and the accuracy εp,s attained was recorded. The results are shown in Figures 55

and 56.

For N = 5, fBcEGO demonstrates superior performance for 0.02 ≤ ε ≤ 0.5. The

remaining algorithms with the exception of osEGO exhibit similar performance with

each other. For this case, fBcEGO is the most robust, i.e., solves all problems to within

the lowest ε, excluding outliers (note that for this case, fBcEGO had no outliers,

as shown in Figure 65a. osEGO performs poorly because this algorithm generally

requires a large number of function evaluations. Difficulties in maximizing osEGO’s

ISC have also degraded the true performance. For N = 10, the trends are similar but

with CORS-RBF dominating most the competing algorithms for 0 ≤ ε ≤ 0.02. In

this case, CORS-RBF, EGO, P-algorithm, and fBcEGO are the most robust. fBcEGO

had one outlier, as shown in Figure 65b, which can but excluded from the data profile

by ignoring the uppermost step in Figure 64b. For N = 20, CORS-RBF completely

dominates the competing algorithms with the exception of two outliers. CORS-RBF

can achieve superior accuracy, solving 50% of the problems to ε ≤ 10−4. fBcEGO

demonstrates above average performance relative to the remaining algorithms as well

as superior robustness, tying with the P-algorithm.

In terms of median accuracy attained, fBcEGO exhibits relatively good performance

with the best median accuracy for N = 5 and competitive accuracy for N = 10 and

N = 20. For these two latter cases, CORS-RBF exhibited the best median accuracy.

For this experiment, fBcEGO exhibited competitive performance but as N became

larger, CORS-RBF dominated the competing algorithms. The results do not support
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the hypothesis in §7.1.
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The ability of the bound constrained algorithms to solve problems to high degrees

of accuracy was tested next. The algorithms were tested on ten bound constrained

problems with n ≤ 3 (Table 18) over nine initial designs (Table 5), giving a total of

90 tests per algorithm. Two sets of these tests were performed: one set for ε = 1%

and one set for ε = 0.1%. An upper limit of N = 50 is enforced, at which point a test

is considered a failure. The selected problems were solvable by all algorithms and the

low dimensionality allowed the tests to complete within a reasonable time frame. As

a benchmark, the tests completed in approximately 72 hours on a 64-bit Windows 7

PC with 4GB RAM and a quad-core Intel i5 750 processor running at 2.67 GHz. One

instance of MATLAB 7.9 was running with multithreading enabled.

The results are shown in Figures 57 and 58. For the first set of tests with ε ≤ 1%,

EGO, fBcEGO, and CORS-RBF exhibited similar performance which was also superior

to the remaining algorithms. In this case, EGO and CORS-RBF were the most

reliable algorithms, solving the largest percentage of problems within the upper limit

of N = 50. EGO, fBcEGO, and CORS-RBF show similar location and variation for

the performance (see Figure 58). For tests with ε ≤ 0.1%, CORS-RBF dominated

all competing profiles and proved to be the most reliable, solving nearly 80% of

all problems. EGO and fBcEGO followed CORS-RBF closely up to N = 10 but

showed inferior performance for higher N . All of the remaining algorithms with the

exception of osEGO showed similar reliability. Considering only the successful cases,

EGO, fBcEGO, and CORS-RBF again show similar location and variation for the

performance (see Figure 58).

Contrary to the hypothesis in §7.1, fBcEGO did not provide any significant perfor-

mance gain over the MLE-based EGO, although both fBcEGO and EGO performed

significantly better than the P-algorithm. The similar performance between EGO

and fBcEGO is explained in two ways. First, the bound constrained test problems

were smooth and generally well-behaved; the MLE approach works well for smooth,
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well-behaved problems. Second, the implementations of the competing algorithms in

the current research are highly optimized and robust. Asymptotic expansions of the

ISCs were used for the P-algorithm and EGO, while analytical gradients were used for

the ISCs of RBF-G and CORS-RBF. Neither asymptotic expansions nor analytical

gradients could be derived for the fully Bayesian case.

A problem specific analysis is reported in Table 19 and Table 20 for ε = 0.01 and

ε = 0.001, respectively. In general, the most difficult problems were the Goldstein &

Price function, the Paviani problem, and Shekel’s Foxholes. The Goldstein & Price

function has large discrepancies in function values but this can be corrected with

a logarithmic transformation; it is the shape of the global minimum basin that is

problematic. The Paviani problem has very small discrepancies in function values,

which may cause an algorithm to become trapped in flat regions that are not critical

points. Shekel’s Foxholes is a “needle in the haystack” type of problem with deep

basins that have relatively small diameters. The Gulf R&D problem is not difficult

but it shows significant failure rates. For this problem, y∗ = 0 and it is generally

more difficult to meet an absolute tolerance than a relative tolerance.
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Figure 57: Performance of competing algorithms on ten bound constrained problems
with n ≤ 3 over nine initial designs (Table 5); percentage of problems solved to
ε ≤ 1% (left) and ε ≤ 0.1% (right) as a function of simplex gradients.
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Figure 58: Box plots of test results of ten bound constrained problems with n ≤ 3
over nine initial designs (Table 5); ε ≤ 1% (left) and ε ≤ 0.1% (right). Successful
cases only.
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8.4 Experiment 3: Handling Of Nonlinear Constraints

Figure 59 shows the data profiles for the tests on the nonlinearly constrained prob-

lems. In contrast with the bound constrained results (Figure 55), fBcEGO shows

a significant performance gain over its competitors. It was inferred in §4.2.1 that

the fully Bayesian approach would result in better performance for nonlinearly con-

strained problems because the new, more informative modeling approach is applied

to all constraint functions. Compare this with the naive likelihood based approaches,

which, as discussed in §2.2.4, can fail to provide an adequate representation of a

function. This can occur with any number of the constraint functions, which can

result in nonsensical sample placement early on due to the multiplicative nature of

the constrained EI criterion, equation (4.4). fBcEGO solves up to three times as many

problems for a given accuracy and simplex gradient budget.

In terms of robustness, i.e., the worst value of ε attained by an algorithm in Figure

59, fBcEGO surpasses the competing algorithms if the outliers are excluded (see Figure

60). The median accuracy attained by fBcEGO is approximately three times better

(“half an order of magnitude”) than that attained by the closest competitor for N = 5,

one order of magnitude better for N = 10, and one and a half orders of magnitude

better for N = 20. For N = 5, the median of fBcEGO is at approximately the same

level as or lower than the first quantile of all its competitors. For N = 10, the third

quantile of fBcEGO is lower than the medians of all its competitors. For N = 20,

the third quantile of fBcEGO is approximately equal to the first quantile of its closest

competitor. In terms of dominance, fBcEGO dominates the competing algorithms for

N = 5 if the outliers are excluded. For N = 10 and N = 20, fBcEGO dominates

even with the outliers. The superiority of fBcEGO on this test problem set is clear.

The remaining surrogate model-based algorithms exhibit similar median performance

while DIRECT expectedly performs the worst because it is limited to sampling along

coordinate directions.
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For the equality constraint violation (Figure 61), the trends are identical. The

data profile of fBcEGO dominates the competitors with minor exception and if the

outliers are excluded(see Figure 62). fBcEGO exhibits superior median performance in

terms of equality constraint violation. In Figure 62 The median performance of the

competing algorithms remains relatively unchanged with increasing N but improves

for fBcEGO.

Figure 63 shows the performance profiles of the accuracy attained and equality

constraint violation for all N condensed into one one data profile for each algorithm.

The superiority of fBcEGO on nonlinearly constrained problems is clear. The data

profile of fBcEGO dominates the data profiles of the competitors if all outliers are

excluded.
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Figure 63: Results of nonlinearly constrained tests for all N . Accuracy, left; equality
constraint violation, right.

8.5 Experiment 4: Noise Corrupted Observations

As discussed in §5.4, an additional GP hyperparameter is required to model output-

dependent noise. For the likelihood-based algorithms P-algorithm and EGO, this

means that the MLE problem (2.15) is two-dimensional; for osEGO this problem is

n + 2 dimensional. For the fully Bayesian approach, a joint prior p(θ, θn) must be

placed over θ and θn. The algorithms have no knowledge of whether or not a function

being minimized is truly noise-free. Thus, when regression algorithms are applied to

noise-free problems, the resulting performance will be fundamentally different from

the performance of interpolative algorithms applied to the same problems. This is

taken into account in the test matrix for noise corrupted problems (Figure 53).

The competing algorithms for the noise corrupted problems are listed in Table

14 and the test problems are those listed in Table 18 but corrupted with output-

dependent noise as discussed in §5.4. Experiments are conducted for the three noise

levels εn = 0%, 0.01%, and 1% with three budgets of N = 5, 10, and 20 simplex

gradients. The data profiles and box plots for each N are given in Figures 64 and 65,

respectively. Each panel in Figure 64 includes all test problems over all three noise
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levels, treating each noise level as a different test. The performance profile of fBcEGO

most closely competes with that of EGO, with fBcEGO able to solve more problems

to high accuracies (lower ε). The data profiles of EGO and fBcEGO dominate those

of osEGO and the P-algorithm, with minor exception. Excluding outliers, the P-

algorithm, EGO, and fBcEGO exhibit similar robustness for all N . In terms of median

performance, EGO and fBcEGO show similar median accuracy attained as well as

a similar variation in the performance. Both algorithms exhibit superior median

performance when compared with the P-algorithm and osEGO.

Figure 66 shows the results as a function of N and εn. An important observation

from this chart is that fBcEGO can attain a higher accuracy (lower ε) on a significantly

larger percentage of problems than any other algorithm. For example, for the case

(N , ε) = (20, 0.01), fBcEGO can solve approximately 30% of the problems to within an

accuracy of ε ≤ 10−4. The ability of fBcEGO to recover the true global minimum to

such high accuracies in the presence of noise can be attributed to the fully Bayesian

approach. By fitting many different models and judging them from a Bayesian view-

point, more can be learned about the hyperparameters. This property may prove

useful when the algorithm is applied to real-life design problems.
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Figure 66: Results of noise corrupted tests by simplex gradient budget N and noise
level εn; noise level displayed as an absolute quantity.
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8.6 Experiment 5: Nonsmooth Problems

It was discussed in §2.2 that different basis functions may lead to improved modeling

of certain characteristics, which can improve the performance of surrogate model-

based global optimization algorithms on specific problems. While experiments were

found [104] that assess the global modeling accuracy of GPs with different covariance

functions and fitting methods, no experiments were found that assess the performance

of global optimization algorithms with different basis functions. This is not a trivial

difference, because the goal of global optimization algorithms is not to develop a

globally accurate surrogate model of the design space, but rather to focus the limited

function evaluations in promising areas where the global minimum is likely to occur.

This section presents the performance of the nonsmooth algorithms listed in Ta-

ble 15 on the nonsmooth problems listed in Table 10. An important distinction for

these problems is that the test functions are nondifferentiable at the global mini-

mizer. The tests would be irrelevant if the minimizer occurred in the differentiable

region. An important potential application of nonsmooth basis functions, besides

solving nonsmooth problems, is in the solution of constrained problems where a non-

smooth penalty function, e.g., equation (4.1), is used and there is at least one active

constraint. In such cases, the transformed problem will be nondifferentiable at the

global minimizer.

Figure 67 shows the data profiles of the number of simplex gradients N required

to attain an accuracy of 1% over the nine initial designs from Table 5. For nonsmooth

basis functions, fBcEGO dominates the competing algorithms, with minor exception.

fBcEGO also exhibits no failures and is the most reliable, solving 100% of the problems

at the least cost. For smooth basis functions (Figure 67, left), CORS-RBF dominates

the competing algorithms, with minor exception. Using a smooth basis function to

solve nonsmooth functions results in significantly worse performance when compared

with the performance that can be obtained by employing nonsmooth basis functions
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for the same problems. This is due to the inability of the smooth basis functions to

accurately model nondifferentiable subspaces. It is emphasized that the test prob-

lems were nondifferentiable at the global minimizers. It is inferred that if the global

minimizers occurred in differentiable regions, the smooth basis functions would have

outperformed the nonsmooth basis functions.

Figure 68 shows the box plots of the performance. Comparing the box plots for

smooth basis functions (left) to those of nonsmooth basis functions (right), it can be

seen that incorporating the proper prior knowledge about the problem being solved

can lead to substantial performance improvements. For example, compare the box

plot corresponding to fBcEGO for smooth and nonsmooth basis functions to see that

the median performance has improved by approximately 100% while the interquartile

range has also been reduced by a factor of two. An unexpected result is that CORS-

RBF performed better on nonsmooth problems with a smooth basis function. CORS

is the only algorithm that uses the surrogate model directly as the ISC, thus the

accuracy of the surrogate model becomes a factor in the performance. Since the

nondifferentiable subspaces of the nonsmooth problems are relatively small, using the

smooth basis function resulted in better performance.

It remains to examine the performance of nonsmooth algorithms on smooth prob-

lems (Experiment 5.3). The nonsmooth algorithms are applied to the smooth prob-

lems in Table 18 over nine initial designs and the cost in simplex gradients N required

to attain 1% accuracy is recorded. Indeed, the general performance trend is negative

for algorithms with nonsmooth basis functions, as they are unable to model curva-

ture to the same degree as the smooth basis functions. The only exception is fBcEGO,

which shows identical performance up to N = 15 regardless of basis function. This

atypical behavior of fBcEGO is a manifestation of the fully Bayesian approach, which

constructs a finite mixture model, thereby recovering (to a degree) the curvature-

modeling abilities of the smooth basis functions.
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Problem specific analyses of the tests performed in this section are given in Tables

21 – 23. Table 21 shows the problem specific analysis for the smooth algorithms on

the nonsmooth problems. The most difficult problems for the smooth algorithms were

NS2D4, NS2D5, and NS2D7. These problems had global minimizers in steep non-

differentiable “valleys”. The performance on these problems improves dramatically

when nonsmooth algorithms are used (Table 22). Finally, Table 23 shows the perfor-

mance of the nonsmooth algorithms on smooth problems. The difficult problems in

this case are the Paviani problem and Shekel’s Foxholes.
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Figure 67: Performance of competing algorithms on nine nonsmooth problems with
n ≤ 3 over nine initial designs; percentage of problems solved as a function of simplex
gradients required to achieve ε ≤ 1%. Smooth basis functions (left) and nonsmooth
basis functions (right) from Table 15.
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Figure 68: Box plots of test results of nine nonsmooth problems with n ≤ 3 over nine
initial designs; successful cases only. Smooth basis functions (left) and nonsmooth
basis functions (right) from Table 15.
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Figure 69: Performance of nonsmooth algorithms on ten smooth problems with n ≤
3 over nine initial designs; percentage of problems solved as a function of simplex
gradients required to achieve ε ≤ 1% (left) and box plots of successful cases (right).
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8.7 Experiment 6: Hard Constraints

See Chapter 9.

8.8 Additional Findings

8.8.1 Effect Of Prior Density On The Performance Of fBcEGO

fBcEGO uses I = 100, i.e., 100 elements in p(θ), with −5 ≤ log θ ≤ log(1.5) and θ

uniformly distributed in the log-space as an initial assumption. The model fitting

method in §2.2.6 then allows small changes in the number of elements while simulta-

neously expanding the domain of θ if necessary before cropping the domain to only

include 99.99% of the largest contributors to p(θ|y(k)). The posterior is then recom-

puted and used to construct the GP model. In many noise-free cases, this process

resulted in a small number of important modes, say 5–10. A user may desire to know

the consequence of starting out with a less populated domain for θ, say, I = 20 or

I = 50, since this would reduce the analytical effort of fBcEGO.

An experiment is conducted to assess the performance of fBcEGO with I = 20, 50,

and 100 over −5 ≤ log θ ≤ log(1.5) on low dimensional problems of varying difficulty

(problems B-1, B-2 through B-6, B-8, B-10, and B-13; problems B-7 and B-9 with

n = 2; and B-11 with n = 3). Figure 70 shows the accuracy attained after N = 5, 10,

and 20, with the MLE-based algorithm EGO included as the baseline method. The

corresponding box plots are shown in Figure 71. While the median performance and

spread of fBcEGO for all I is better than the median performance of EGO, no definite

improvement can be ascertained between the three cases of I. It is inferred that for

noisy problems which require a two dimensional prior p(θ, θn), a reduced value of I

can be used to obtain similar performance to a highly populated prior p(θ) but at a

lower analytical cost.
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CHAPTER IX

APPLICATIONS

The global optimization methodology is applied to two aircraft-related design prob-

lems. The first problem deals with the design of an airfoil section for minimum drag.

The second problem deals with the conceptual design of a commercial aircraft from

an existing baseline with the goal of minimizing the maximum gross takeoff weight

under performance constraints. These problems will serve to evaluate the capabilities

of the methodology with respect to real-life design problems.

Recall that the motivation for this research (§1.1) was the need for an efficient

global optimization algorithm for unconventional designs or novel concepts. The de-

sign codes involved were assumed to be computationally expensive and subject to the

technical challenges listed in §1.2. The application problems in this chapter are nei-

ther expensive nor are they unconventional in the sense that a non-derivative design

is being produced. Remark 7.3.1 discussed why the evaluation time of the test prob-

lems is irrelevant for testing purposes. The application problems exhibit the technical

challenges listed §1.2, which are properties of expensive design codes describing un-

conventional vehicles. Thus, the fact that the designs are not unconventional does

not preclude their use as a means to evaluate the primary hypothesis and research

objective. The familiar solutions obtained in the application problems may be better

suited than unconventional designs to illustrate the capabilities of fBcEGO.

9.1 Airfoil Section Design

This problem was inspired by [38].
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9.1.1 Background & Challenges

The combination of optimization algorithms and CFD solvers offers promise for the

development of improved aerodynamic designs. In this application, an airfoil based

on the supercritical NASA SC(2)-0610 airfoil [47] is optimized for sectional drag cd.

Analysis is provided by XFOIL v6.94 [31], a linear-vorticity stream function panel

method for subsonic calculations, and optimization is performed using the methodol-

ogy in Chapter 6.

There are two main difficulties in airfoil section design. The first is the parame-

terization of the airfoil section such that various shapes can be explored efficiently.

Two requirements guide the selection of the parameterization scheme: minimization

of design variables and orthogonality of design functions. Airfoils are represented

as a set of upper and lower coordinates zu and z` for the upper and lower surfaces,

respectively, at the same chordwise locations x. The requirements can be satisfied

by employing orthogonal basis functions to represent the airfoil rather than using

the coordinates of the airfoil section as the design variables. Orthogonality allows

exploration of all possible airfoil sections that are spanned by the basis functions

through a linear combination of the basis functions. Lack of orthogonality implies a

nonunique mapping of the parameter values to the geometry. The resulting spurious

multimodality of the objective function can degrade the search process [57].

A recent method to generate orthogonal basis functions for an airfoil is to represent

the airfoil using a Savitzky-Golay smoothing filter (call this function f1) and to then

generate subsequent functions by applying the smoothing filter to the residuals of

the preceding fit [101, 38, 90]. Each basis function is characterized as a set of upper

and lower z values with chordwise distribution matching the original coordinates.

For this problem, the chordwise locations are defined by the cosine spacing x/c =

1
2
(1−cos β) where 0 ≤ β ≤ π and z values were obtained by cubic spline interpolation

of the original linearly spaced coordinates [47]. This gave significantly improved
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Figure 72: Orthogonal basis function airfoil parameterization for NASA SC(2)-0610
airfoil.

representation at the leading and trailing edges and a smoothed pressure distribution,

which led to a sectional drag value of 104 × cd = 84.6 for f1 as computed by XFOIL

(compare Figure 73a with Figure 73b). The original SC(2)-0610 airfoil designed

by a hodograph method is reported to have a sectional drag coefficient of 104 ×

cd = 84.7. The drag coefficient of the original airfoil as computed by XFOIL is

104 × cd = 84.8 . The residual functions f2, f3, f4, and f5 are orthogonalized via

singular value decomposition and then added to f1 with weightings w2,w3,w4, and

w5, respectively. The equality constraints cl = 0.6 and (t/c)max = 10% are enforced

internally such that the parameterized airfoil remains in the SC(2)-0610 class. The

first five basis functions are shown in Figure 72. Nonsensical airfoils are produced

by adding individual functions with large weightings, but a high degree of geometry

control can be achieved by combining the functions and optimizing their weightings.

A technical challenge of this parameterization approach is that bounds on the design

variables wi are unknown and non-intuitive and must be obtained from previous

knowledge or by some inexpensive application-specific method. Thus, while the airfoil

is not necessarily an unconventional design, the design space in terms of the weightings

wi is unfamiliar.

The second difficulty with airfoil section design involves the analysis code that is
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Figure 73: Surface pressure distributions.

used, XFOIL in this case. XFOIL is a subsonic analysis code which will not converge

when the local speed over the airfoil becomes too large, when the boundary layers

separate, or when a nonsensical airfoil is analyzed. Analysis of nonsensical airfoils

can be avoided by checking the coordinates, but the other two failure modes cannot

be predicted. Thus, there will be hard constraints in this application. Discretization

error and rounding in the analysis code also makes the problem noisy (XFOIL only

reports cd values to five decimal places). In some cases, XFOIL may not converge

unless the solution is initiated from another converged solution. When this safeguard

fails, “holes,” i.e., missing data, will occur in the design space.

9.1.2 Competing Methods

Besides fBcEGO, two state-of-the-art methods are considered: a genetic algorithm

(GA) and DIRECT, both of which have been modified to handle hard constraints. The

GA is a canonical binary-coded implementation, e.g., [117], using 52 bits of precision

on the unit hypercube and a roulette wheel with elitism selection scheme to create

subsequent generations. The initial population is randomly generated until 5n feasible

parents have been created. The standard crossover and mutation operators have been

modified to cope with offspring fitness evaluation failures by allowing the parents to
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Figure 74: Performance of genetic algorithm modified to handle hard constraints;
example nonlinearly constrained problem. Hatched area represents infeasible area by
hard constraint.

survive in such cases. An example of the performance on a test function for 150

function evaluations is shown in Figure 74. This problem exhibits two inequality

constraints indicated by the hatched lines and one hard constraint indicated by the

double-hatched area below the main diagonal of the figure. DIRECT with the maximum

value imputation method is also included in the set of competing algorithms for this

problem (see §4.3).

9.1.3 Methodology Applied To Two-Variable Optimization

9.1.3.1 Step 1: Formal Problem Statement

A two-variable optimization is performed first with the weightings w2 ∈ [−0.1, 0.1] and

w3 ∈ [−0.04, 0.03] and w4 = w5 = 0. The bounds for the weightings were unknown

due to the non-intuitive nature of the design space, i.e., it was difficult to tell what the

proper bounds should be given Figure 72. However, the airfoil geometry as a function

of w2 and w3 can be manually inspected and used to obtain an outer approximation

to the feasible area. Figure 75 plots a coarse grid of some of the airfoil shapes that

can expected for the given bounds. The hatched area indicates nonsensical airfoils,

i.e., z` > zu for some x. Airfoils in white rectangles indicate failed (NaN) values for cd,
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and those in shaded rectangles represent successful cases, with the shading becoming

darker for lower values of cd. The airfoil in the square w2 = w3 = 0 corresponds to

the baseline airfoil f1.

The sectional drag coefficient cd is to be minimized at c` = 0.6, M∞ = 0.78,

and Re = 3 · 106. The thickness-to-chord ratio t/c of the airfoil is fixed at 10% as

defined by the last two digits of the four digit NACA code. These constraints are

enforced internally. Thus, the problem is only subject to bound constraints and hard

constraints. The sectional drag coefficient cd is then a function of w2 and w3 and

the “true” function cd(w2,w3) generated by 51× 51 simulations on a uniform grid is

shown in Figure 76 as a color surface.
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9.1.3.2 Step 2: Select Initial Design

This problem had hard constraints, but as long as some method is used to assign

values to failed iterates, the results from §8.2 can be directly applied. Two designs

are selected for this problem: N1 DGS+FCP and N2 LHD+FCP. The DGS base

design is chosen due to its success in §8.2 and the corner points are added to drive

the search away from these areas. DIRECT is executed until N1 = 6 feasible DGS

points are found for the initial design and then four corner points are added. The

N2 LHD base design is chosen for its good performance when the simplex gradient

budget is not severely restricted (see Figure 54). Because this problem is expected

to produce many failures in the initial design, it may be worthwhile to sample the

design space in a space-filling manner such that fBcEGO can generate a more accurate

initial model. This may help increase the number of successful subsequent iterates

due to the improved values generated by the selected imputation method.

The N2 LHD+FCP initial design returns sixteen failures shown as red spheres in

Figure 76 and nine successful function evaluations shown as black spheres, a 64.00%

failure rate. In comparison, the failure rate of the 51 × 51 surface was 64.52%. The

region of feasibility is well defined, with infeasible areas corresponding to low values

of w2 with high values of w3, and high values of w2 with high values of w3. Failures

are also present interior to the feasible region, shown as “holes,” which adds to the

difficulty of the problem.

Figure 76 also shows the outcome of applying the penalized imputation scheme

from §5.3 to handle hard constraints. A surface (coarse mesh) is fit through the nine

initial feasible (black) points, which is then used to impute the values of the failed

(red) points using the relation y(x(f)) ← Ŷ (x(f)) + s(x(f)). A second surface (fine

mesh) is fit through all points which, in combination with the reinterpolation scheme

from §5.4, is used to compute the expected improvement. Note that the fine mesh

will in general rest above the coarse mesh due to the penalization, but this is not
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guaranteed. The expected improvement is shown as the filled contour plot on the

horizontal plane of Figure 76, with values below logEI(x) = −11 omitted to avoid

cluttering the figure. The expected improvement is maximized to obtain the next

iterate and the process repeats. The situation after three function evaluations (one

simplex gradient) is shown in Figure 76 with all three update points being feasible

(green spheres). The global minimum value is 104×cd = 77.6 and the global minimizer

is indicated on the horizontal plane by the × symbol.
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9.1.3.3 Step 3: Select Stopping Criteria

For noise corrupted problems, the most reliable stopping criterion is a limit on the

number of function evaluations allowed. For this problem, an upper bound of N = 50

is used.

9.1.3.4 Step 4: Select Covariance Function

XFOIL uses the same models in all regions of the feasible design space to compute the

sectional properties. The underlying physics are also expected to be smooth. Thus,

there is no reason to believe that the function cd(·) is nonsmooth. The surface shown

in Figure 76 confirms this. The isotropic squared exponential covariance function is

chosen for fBcEGO.

9.1.3.5 Step 5: Execute fBcEGO

The test matrix for this problem is shown in Table 16. fBcEGO is tested with three

imputation methods from §5.3 and two initial designs. These methods are in turn

compared with the GA and DIRECT, both of which have been modified to deal with

hard constraints.

9.1.3.6 Step 6: Visualization & Analysis

Table 24 shows the results for the two-variable problem after N = 50 simplex gra-

dients. All algorithms (except DIRECT) show similar failure rates in the initial de-

sign/population which reflects the failure rate of the surface. When fBcEGO employs

the predictor imputation method, the subsequent failure rate approaches 90% for

both designs. When the penalized imputation method is used, the subsequent failure

rate is reduced by a factor of two. This demonstrates the ability of the penalized

imputation method to drive the search away from the infeasible regions, which also

results in lower values of cd. The performance of fBcEGO with the penalized imputa-

tion method and N2 LHD+FCP initial design after seventy one function evaluations
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where its best value of 104 × cd = 77.8 is found is shown in Figure 77. Maximum

value imputation provides better performance than predictor imputation because it

penalizes infeasible points, but it is surpassed by the penalized imputation method.

With the initial population of the GA concentrated within the feasible region, subse-

quent failures are low. Although the GA deals well with missing data, such a search

is more suited to finding optimal regions in high-dimensional or multimodal prob-

lems rather than accurately locating the global minimum. DIRECT exhibits a low

subsequent failure rate because the problem is unimodal and the algorithm samples

frequently within the single global minimum basin, resulting in a search over a fine

grid around the global minimum. The performance of DIRECT is compared with the

performance of fBcEGO with N2 LHD+FCP initial design and penalized imputation

method after N = 50 simplex gradients in Figure 78. fBcEGO becomes trapped in the

large flat drag bucket of the cd surface and also continues to sample globally, while

DIRECT samples a fine grid around the global minimum.

Figure 79 shows the optimized airfoil superposed with the original NASA SC(2)-

0610 airfoil, and Figure 83a shows the surface pressure distribution of the optimized

airfoil. It can be seen in Figure 79 that the camber in the aft section of the airfoil

has increased. Comparing the surface pressure distribution of the optimized airfoil in

Figure 83a with the distribution of the baseline airfoil in Figure 73b shows that the

peak pressures at the upper surface of the leading edge and the lower surface of the

trailing edge have been reduced.

9.1.4 Methodology Applied To Four-Variable Optimization

Table 25 shows the results for the four-variable problem. The performance trends are

identical to those of the two-variable optimization, with DIRECT finding the best value

of 104 × cd = 74.5 followed by the penalized imputation method with N2 LHD+FCP

initial design with 104× cd = 75.5. The failure rates are higher because the infeasible
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Figure 77: Performance of fBcEGO on the two-variable optimization problem after
seventy one function evaluations with N2 LHD+FCP initial design and penalized
imputation method.
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Table 24: Performance comparison of four methods for two-variable airfoil optimiza-
tion after N = 50 simplex gradients.

Algorithm Imputation Initial design Initial failures Subsequent failures ymin

fBcEGO Predictor N1 DGS+FCP 64.71% 87.22% 78.7

fBcEGO Predictor N2 LHD+FCP 64.00% 85.60% 80.6

fBcEGO Penalized N1 DGS+FCP 64.71% 39.10% 78.3

fBcEGO Penalized N2 LHD+FCP 64.00% 47.20% 77.8

fBcEGO Max. value N1 DGS+FCP 64.71% 57.14% 77.6

fBcEGO Max. value N2 LHD+FCP 64.00% 59.20% 79.3

GAa Discard Random 70.66% 27.21% 78.9b

DIRECT Max. value – – 24.67% 77.6

a Average of 10 runs with initial population of 10
b Standard deviation of ±1.8; min. value found was 104 × cd = 77.5
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Figure 78: Contour plot of 104 × cd(w2,w3) with performance of fBcEGO (left) and
DIRECT after N = 50 simplex gradients (right); see Figure 77 for legend.
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Figure 79: Baseline versus optimized geometry for two-variable optimization of the
SC(2)-0610 airfoil.

region is larger. Figure 80 shows the performance of fBcEGO with N2 LHD+FCP

initial design and with the penalized imputation method after N = 50 simplex gra-

dients. Figure 81 shows the performance of DIRECT after N = 50 simplex gradients.

These two figures show a grid of two-dimensional tiles, each with w2 and w3 varying

over their range but with a discrete value of w4 and w5. As such, the design variables

for w4 and w5 were rounded to the nearest multiple of 0.03 for visualization purposes.

The true surface cd(w2,w3,w4,w5) is built from a simulation of 114 XFOIL runs and

is represented by the colored patches in the figure. The failure rate of this “true”

surface was 91.64%. The dark colored patches represent areas that are infeasible

due to nonsensical airfoil geometry. Figure 80 and Figure 81 shows a large number

feasible points clustered around the global minimum. Including the additional basis

function f4 and f5 in the airfoil parameterization has increased the geometry control

at the leading edge, allowing more efficient airfoils to be generated. The drag is re-

duced by thirty one counts (4.0%) from the two-variable global minimum when all

four basis functions are used. Figure 82 shows the optimized airfoil superposed with
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Table 25: Performance comparison of four methods for four-variable airfoil optimiza-
tion after N = 50 simplex gradients.

Algorithm Imputation Initial design Initial failures Subsequent failures ymin

fBcEGO Predictor N1 DGS+FCP 71.15% 98.99% 77.8

fBcEGO Predictor N2 LHD+FCP 94.12% 75.88% 77.8

fBcEGO Penalized N1 DGS+FCP 71.15% 96.46% 77.5

fBcEGO Penalized N2 LHD+FCP 94.12% 74.87% 75.5

fBcEGO Max. value N1 DGS+FCP 71.15% 87.37% 77.5

fBcEGO Max. value N2 LHD+FCP 94.12% 75.87% 78.2

GAa Discard Random 89.82% 47.75% 84.2b

DIRECT Max. value – – 37.20% 74.5

a Average of 10 runs with initial population of 20
b Standard deviation of ±6.4; min. value found was 104 × cd = 78.3

the original NASA SC(2)-0610 airfoil, and Figure 83b shows the surface pressure dis-

tribution of the four-variable optimized airfoil. The improved geometry control of the

four-variable problem at the leading edge results in a smoother leading edge pressure

distribution. Compared with the original surface pressure distribution (Figure 73a),

the optimized airfoil exhibits lower peak pressure coefficients.

9.1.5 Conclusions

The use of imputation methods to handle hard constraints enables optimization of

unfamiliar design spaces. The penalized imputation method outperformed the pre-

dictor and maximum value imputation methods in terms of subsequent failure rate

on the two-variable problem. The performance of the imputation methods on the

four-variable problem did not exhibit any discernible differences. This was due to the

difficulty of the design space.
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Figure 80: Performance of fBcEGO on the four-variable optimization problem after
N = 50; N2 LHD+FCP initial design with penalized imputation method. Regions of
infeasibility due to nonsensical airfoil geometries are shown as dark blue.
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Figure 82: Baseline versus optimized geometry for four-variable optimization of
SC(2)-0610 airfoil.
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Figure 83: Surface pressure distribution of optimized airfoils.
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Figure 84: Bombardier CRJ-700 [www.aviationnews.eu].

9.2 Design Of A Notional 70-Passenger Aircraft

9.2.1 Background & Challenges

The purpose of this application is to test the performance of fBcEGO on a larger design

problem that is subject to all the technical challenges listed in §1.2. The aircraft of

interest is a notional 70-passenger regional jet modeled after the Bombardier CRJ-700

(see Figure 84). During the period between 1995 and 2004, regional jet fleets in the

United States have increased exponentially. Between 1998 and 2003, daily regional

jet operations increased by 356% [72]. The demand for regional aircraft in the 60- to

99-seat segment is expected to continue to grow over the next twenty years [16].

The design philosophy for this aircraft design problem is one of determining the

combination of geometric parameters that will meet performance requirements at

minimum weight. The weight is considered as the traditional indicator of the overall

life-cycle cost of the aircraft. Analysis is provided by the Flight Optimization System

(FLOPS) [65], a multidisciplinary design code for conceptual aircraft design (see

§9.2.2). The mission profile of the aircraft is given in Figure 85.

The design space of this problem is subject to all the technical challenges listed

in §1.2 except for the computational expense. Figure 86 shows some responses from

FLOPS as functions of thrust-to-weight ratio and wing area in the region surrounding

191



www.manaraa.com

T
ax

i
ou

t
9

m
in

T
ak

eo
ff

2
m

in
C

li
m

b

Cruise-climb

M = 0.78

D
escen

d

T
ax

i
in

5
m

in

M
is

se
d

ap
p
r.

2
m

in
C

lim
b

Cruise
M = 0.78

D
escend

A
p
p
ro

ac
h

an
d

la
n
d

H
ol

d
45

m
in

M
=

0.
78

1685 nmi
Flight fuel and time

Block fuel and time

150 nmi

Reserve fuel

Time [min]

0 9 11

29
.5

22
4.

1

24
7.

2

25
2.

2

A

B
C

D
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it is calculated by FLOPS. Left, main mission; right, reserve mission. Altitude and
distance traveled at specified points: 0 ft, 0 nmi at A; 34266 ft, 121.5 nmi at B; 37593
ft, 1455 nmi at C; 0 ft, 1685 nmi at D.

the baseline aircraft. The design space is generally nonconvex with regions which

are infeasible due to hard constraints. Some responses are poorly behaved on the

boundaries of the feasible region and appear noisy. In addition, the design variable

bounds are generally unknown but assumed given for this problem.
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9.2.2 Flight Optimization System (FLOPS) [65]

The Flight Optimization System (FLOPS) is a multidisciplinary system of computer

programs for conceptual design and analysis of advanced aircraft. FLOPS is generally

used for subsonic commercial aircraft but has been extended to supersonic commer-

cial aircraft [60]; for military systems, the Aircraft Synthesis tool (ACSYNT) [80] is

more appropriate. The ability to integrate customized models for the different aircraft

design disciplines into the program makes FLOPS suitable for the conceptual design

and analysis of advanced aircraft concepts. FLOPS consists of nine modules: weights,

aerodynamics, engine cycle analysis, propulsion data scaling and interpolation, mis-

sion performance, takeoff and landing, noise footprint, cost analysis, and program

control. Through the program control module, FLOPS may be used to analyze a

point design, parametrically vary design variables, or optimize a configuration for

performance using internal nonlinear programming techniques. In this application,

FLOPS is treated as a black-box analysis tool and fBcEGO is used as the optimizer.

The weights module uses empirical equations to predict the weight of each item in

a group weight statement. Analytical wing weight estimation techniques are available

for some unconventional wing planforms. The aerodynamics module is based on an

empirical drag estimation technique developed from an analysis of nineteen subsonic

and supersonic military aircraft and fifteen supercritical airfoil configurations [33]

and has been modified to include a method for skin friction calculations at high

Mach numbers [111]. Alternatively, drag polars may be input and then scaled with

variations in wing area and engine nacelle size. The engine cycle analysis module

is based on [43] and provides the capability to internally generate an engine deck

consisting of thrust and fuel flow data at a variety of Mach-altitude conditions. The

propulsion data scaling and interpolation module uses an engine deck that has been

input or one that has been generated by the engine cycle analysis module and uses

linear or nonlinear scaling laws to scale the engine data to the desired thrust. The
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mission performance module uses the weights, aerodynamics, and propulsion data to

calculate flight performance for a given mission profile. The mission segments may

be flown at a variety of conditions, e.g., cruise at optimum altitude or Mach number

or for maximum range or endurance. The takeoff and landing module computes

field lengths and performance in accordance with FAA Federal Aviation Regulations

Part 25 [1]. A detailed takeoff and climbout profile can also be generated for use in

calculating noise footprints. The noise footprint module [24] generates contour data

of the noise levels at user-specified or FAA locations at takeoff and climbout. Noise

sources include fan inlet and exhaust, jet, flap, combustor, turbine, and airframe.

Noise propagation corrections are available for atmospheric and ground attenuation,

ground reflections, and shielding. The cost module in this version of FLOPS (6.12)

was replaced with the more detailed cost module called Aircraft Life Cycle Cost

Analysis (ALCCA) [64], but a cost analysis was not performed.

9.2.3 Competing Methods

The primary algorithm for this problem is fBcEGO. The penalized imputation method

is utilized and the fBcEGO is tested with two initial designs: N1 DGS+FCP and N2

LHD+FCP. Two additional competing algorithms are considered for this problem:

DIRECT with the maximum value imputation scheme and a genetic algorithm. The

implementation and associated details of the algorithms are identical to that of the

previous design problem (see §9.1.2).

9.2.4 Methodology Applied To Aircraft Design Problem

9.2.4.1 Step 1: Formal Problem Statement

There are thirteen design variables in total: twelve geometric variables dealing with

the configuration of the main wing and the tail surfaces, and one variable for the

thrust-to-weight ratio. The design variables, their baseline values, and their bounds
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Table 26: Aircraft design variables and ranges with relative normalized
position of baseline values shown graphically

Design Variable Nomenclature Baseline x` xu

Thrust/weight TWR 0.339296 0.28

0 0.5 1

0.42
M

a
in

w
in

g

Area [ft2] SW 760.4 600 900

Aspect ratio AR 7.38 6 9

Taper ratio TR 0.32 0.28 0.36

Sweep [deg] SWEEP 27 0 37.5

H
or

iz
on

ta
l

ta
il Area [ft2] SHT 193.74 150 250

Aspect ratio ARHT 4 3 6

Taper ratio TRHT 0.465 0.35 0.65

Sweep [deg] SWPHT 31.3 0 45

V
er

ti
ca

l
ta

il

Area [ft2] SVT 133.04 80 180

Aspect ratio ARVT 1.089 0.75 1.5

Taper ratio TRVT 0.656 0.5 0.8

Sweep [deg] SWPVT 41 0 55

are given in Table 26. The aircraft configurations corresponding to the lower and up-

per bounds are visualized in Figure 87 against the baseline. The bounds are generally

unknown and assumed to be given, but as with the airfoil design problem, the design

space can be bounded by inspecting the aircraft configurations at the bounds.

There are five nonlinear constraints relating to the aircraft performance, which are

given in Table 27 along with their baseline values and constraint limits. The takeoff

gross weight TOGW of the aircraft is to be minimized while simultaneously meeting or

exceeding the performance of the baseline aircraft. A formal mathematical statement

of this optimization problem is giving in problem 9.1.
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Table 27: Aircraft design objective and constraints.

Response Nomenclature Baseline Values Constraint Bound Constraint ∆ Units

Takeoff gross weight TOGW 73465.3 minimize – lb

Takeoff field length TOFL 5233 ≤ 5233 0.00% ft

Landing field length LDGFL 5019 ≤ 5019 0.00% ft

Approach speed VAPP 133.4 ≤ 133.4 0.00% kts

Oper. empty weight OEW 43903.7 ≤ 43903.7 0.00% lb

Fuel weight FW 15321.5 ≤ 15321.5 0.00% lb
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minimize
x∈R13

TOGW

subject to 1− TOFL

5233
≥ 0

1− LDGFL

5019
≥ 0

1− VAPP

133.4
≥ 0

1− OEW

43903.7
≥ 0

1− FW

15321.5
≥ 0

x` ≤ x ≤ xu

(9.1)

9.2.4.2 Step 2: Select Initial Design

Two initial designs are chosen for fBcEGO: N1 DGS+FCP and N2 LHD+FCP. The

implementation of these designs is identical to that of the previous design problem.

9.2.4.3 Step 3: Select Stopping Criteria

The global minimum value for this problem is unknown. The global minimizer may

not even occur within the chosen bounds for this problem. In addition, it is not known

if the current baseline is already the global minimum, i.e., it may not be possible to

further reduce the weight of the aircraft without violating one or more constraints.

The stopping criterion for this problem is set by an upper limit on the number of

simplex gradients, N = 20 in this case.

9.2.4.4 Step 4: Select Covariance Function

Based on Figure 86, the design space appears to be well-behaved on the interior. How-

ever, because this is a black-box design problem, the properties of the responses may

never truly be known. For this reason, the isotropic squared exponential covariance

function is chosen for fBcEGO.
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9.2.4.5 Step 5: Execute fBcEGO

fBcEGO is tested with the penalized imputation method and two initial designs. These

methods are in turn compared with the GA and DIRECT, both of which have been

modified to deal with hard constraints. All algorithms terminate after N = 20 simplex

gradients have been evaluated, i.e., after 280 function evaluations have been made

(initial design inclusive).

9.2.4.6 Step 6: Visualization & Analysis

The results of the aircraft design problem are presented in this section. The perfor-

mance of fBcEGO with N2 DGS+FCP initial design is discussed first, since this design

resulted in a lighter aircraft versus the N1 LHD+FCP initial design. The optimized

configuration (wireframe) is shown in Figure 88 superposed with the baseline con-

figuration (solid model). Tabulated results are shown in Table 28. With respect to

the objective function, fBcEGO reduced the takeoff gross weight by 9.87% from the

baseline value. The sensitivity chart (Figure 89) shows that this is primarily a result

of the low thrust-to-weight ratio and the small tail surface areas.

The landing field length remains constant and is an active constraint. The decrease

in the thrust-to-weight ratio was offset by a corresponding increase in the wing area,

retaining the level of this response. All variables except the thrust-to-weight ratio

have been selected at the limits of the design space, i.e., the bound constraints are

active for these variables. This result is a consequence of not knowing the bound

constraints to the black-box problem and indicates that the design space should be

expanded to allow fBcEGO to search for better designs. This situation is accounted

for in the methodology in Figure 43.

Contour profiles for the baseline and the optimized designs are shown in Figure

90. These plots were generated by evaluating FLOPS over a grid of values for the

thrust-to-weight ratio and the wing area and setting the remaining variables to either
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the baseline or optimized values, respectively. The contour profiler at the optimum

shows no regions that are infeasible by hard constraints with respect to thrust-to-

weight ratio and the wing area. In addition, at the optimum, the feasible area with

respect to thrust-to-weight ratio and the wing area is too small to be seen. A difficulty

that may be encountered in the optimization of black-box design problems is the lack

of a feasible region. fBcEGO addresses this by employing a “Phase I”-type approach

if no feasible points exist in the initial design (see §5.2). If no feasible values have

been found when fBcEGO terminates, it is likely that a feasible region does not exist.

In this situation, the constraints can be relaxed commensurate with the customer’s

updated requirements.

The performance of fBcEGO is compared with the competing methods in Table

29. In general, each method found a different solution when compared with the

remaining methods, indicating the possibility that the design space is multimodal.

These configurations are visualized in Figure 91. With respect to the takeoff gross

weight, all algorithms improved from the baseline but fBcEGO returned the lightest

aircraft, which was over 1000 pounds lighter than the next lightest aircraft found by

DIRECT. With the exception of the takeoff field length, no major differences can be

seen in the performance of each optimized design. The GA returns an aircraft con-

figuration which reduces the takeoff field length by 12.77%. The landing field length

and approach speed were also correspondingly lower than the other configurations,

indicating the possibility of a large feasible area at the configuration found by the

GA.

Table 30 shows the percentage of failed and infeasible designs in both the initial

design/population and subsequent iterates. The failure rate of the N2 LHD+FCP

design was 65.4% and the failure rate of the initial population of the GA was 57.1%.

These failure rates reflect the failure rate of the design space due to hard constraints,

which was approximately 60%. The N1 DGS+FCP design showed a significantly lower
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failure rate due to the adaptive nature of DIRECT. DIRECT shows no initial failure rate

because DIRECT does not use an initial design. The subsequent failure rate, which is

the failure rate of the iterates beyond the initial design, was 0.8% (one failed iterate)

for fBcEGO with N2 LHD+FCP initial design and 4.8% (7 failed iterates) for fBcEGO

with N1 DGS+FCP initial design. fBcEGO uses the penalized imputation method to

address hard constraints and the results indicate the effectiveness of this strategy in

driving iterates away from failed regions.

The percentage of infeasible designs in the initial design/population and subse-

quent iterates is indicated in the last column of Table 30. A design can be infeasible

either by violating an inequality constraint or a hard constraint, thus, this column

includes failed iterates as infeasible designs. The percentage of infeasible designs in

the initial designs of fBcEGO and the GA reflects the size of the infeasible region of the

design space, which was approximately 96.2%. The percentage of subsequent iterates

that were infeasible was 26.5% for fBcEGO with N1 DGS+FCP design and 57.9% for

fBcEGO with N2 LHD+FCP design. This indicates the importance of using adaptive

initial designs. The GA found no feasible subsequent iterates and DIRECT also had a

high percentage of infeasible iterates (88.9%) because it is limited to sampling along

the coordinate directions.

Figures 92 – 95 show the iterates of the four methods in Table 30 in the wing

area by thrust-to-weight ratio space. It can be seen from Figure 93 that fBcEGO with

N2 LHD+FCP initial design explores the design space more than fbcEGO with N1

DGS+FCP initial design (Figure 92). Figure 94 (right) shows that only one sample

from the GA was feasible. Figures 92, 93, and 95 show the feasible iterates converging

towards designs with high wing area and low thrust-to-weight ratio (bottom right of

the charts).
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Figure 88: Baseline (solid) versus optimized (wireframe) configuration.

9.2.5 Conclusions

This design problem demonstrated the superiority of fBcEGO over two other meth-

ods when the function evaluation budget is severely limited. fBcEGO can provide

significant time savings over other direct methods, such as DIRECT or GAs. This

problem also demonstrates the importance of selecting appropriate bounds for the

design space. The best solution was found at the bounds of the design space and a

user may wish to expand one or more variables to find better solutions. This does not

pose any difficulty for fBcEGO, since all previous function evaluations can be reused.

203



www.manaraa.com

Table 28: Baseline versus optimized configuration found by fBcEGO. Design variables
(left) and responses (right).

Design Variable Baseline Optimized

TWR
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TRVT

SWPVT

Response Baseline Optimized ∆

TOGW
66,211.8 lb

73,465.3 lb
−9.87%

TOFL
5,233.0 ft

5,233.0 ft
0.00%

LDGFL
4,383.0 ft

5,019.0 ft
−12.67%

VAPP
116.4 kts

133.4 kts
−12.74%

OEW
41,145.8 lb

43,903.7 lb
−6.28%

FW
11,679.0 lb

15,321.5 lb
−23.77%
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Figure 90: Contour profiles of the design space as a function of wing area SW [sq ft] and
thrust-to-weight ratio TWR, with the remaining variables set to their corresponding
values; baseline aircaft (left) and optimized aircraft (right). Designs indicated by
crosshairs.
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Table 29: Comparison of optimized configurations generated by competing methods,
tabulated results. Design variables (left) and responses (right).

Baseline fBcEGO

Design Variable s DIRECT © GA
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Baseline fBcEGO

Response DIRECT GA

TOGW
68,139.3 lb
67,260.9 lb
66,211.8 lb
73,465.3 lb

TOFL
4,565.0 ft
5,059.0 ft
5,233.0 ft
5,233.0 ft

LDGFL
4,410.0 ft
4,713.0 ft
4,383.0 ft
5,019.0 ft

VAPP
119.1 kts
125.8 kts
116.4 kts
133.4 kts

OEW
42,448.3 lb
41,723.4 lb
41,145.8 lb
43,903.7 lb

FW
12,121.8 lb
12,015.3 lb
11,679.0 lb
15,321.5 lb

(a) Baseline (b) fBcEGO (c) DIRECT (d) GA

Figure 91: Comparison of optimized configurations generated by competing methods.
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Table 30: Comparison of failed iterations and infeasible designs for each method.

Init. failures Init. infeasible
Algorithm Sub. failures Sub. infeasible

fBcEGO
N1 DGS+FCP 4.76%

45.11%

26.53%

98.50%

fBcEGO
N2 LHD+FCP 0.83%

65.41%

57.85%

96.23%

GA
17.14%

57.14%

100.00%

99.43%

DIRECT
15.71%

0.00%

88.93%

0.00%
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Figure 92: Sampling of fBcEGO with N1 DGS+FCP initial design.
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Figure 93: Sampling of fBcEGO with N2 LHD+FCP initial design.
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Figure 94: Sampling of GA.
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Figure 95: Sampling of DIRECT.
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CHAPTER X

CONCLUSIONS

10.1 Summary Of Contributions

The primary contribution of this research is a fully Bayesian surrogate model-based

global optimization algorithm for computationally expensive design problems that

are subject to the set of technical challenges listed in §1.2. The algorithm is named

fBcEGO for fully Bayesian constrained Efficient Global Optimization. fBcEGO shows

significant improvement over current state-of-the-art algorithms for nonlinearly con-

strained problems by obtaining larger reductions in the function values for a given

function evaluation budget.

A critical step of any surrogate model-based global optimization algorithm is the

model fit step. Since the ISC is based directly on the model, a poor model fit results

in poor decision making for the placement of subsequent iterates. It was shown in

§2.2.4 that the current state-of-the-art model fitting technique (MLE) was inadequate

in situations where function evaluations are scarce. A fully Bayesian GP model was

derived which marginalizes the uncertainty of the hyperparameters into the model,

thereby enabling better decision making.

A novel method for assigning the hyperparameter priors was presented in §2.2.6.

This method exploits Bayesian penalization to automatically construct a prior, elimi-

nating the dependence on a user-inputted or static distribution, which may be a poor

assumption. A discrete prior is used, which reduces the analytical effort of fBcEGO by

eliminating modes that provide a negligible contribution to the model. Furthermore,

the use of a discrete prior results in an analytical expression for the model. This elim-

inates the need to marginalize the hyperparameters by some numerical integration
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method.

10.2 Revisiting The Research Questions & Hypotheses

The research questions and hypotheses are revisited in this section. In order to develop

an algorithm that was more efficient than the current state-of-the-art, it was necessary

to address not only the technical challenges, but also the technology gaps in the state-

of-the-art methods. The primary research question asked what type of algorithm can

outperform the state-of-the-art methods within the context of surrogate model-based

global optimization. It was hypothesized that a fully Bayesian surrogate model-based

global optimization algorithm that utilized a fully Bayesian EI criterion as the ISC

would solve a larger percentage of black-box problems in fewer function evaluations

than the state-of-the-art methods, and that the additional techniques employed to

address the technical challenges would be adequate in retaining this performance for

real-life design problems.

The primary research question was decomposed into a set of low-level research

questions aimed at addressing the different components of fBcEGO in isolation. A key

implied assumption throughout this research was that combining the best-performing

components via a bottom-up approach would not result in any destructive interac-

tion. The low-level research questions are restated here and addressed individually

based on the results obtained from the algebraic test problems and aircraft-related

applications.

Research Question 1: How does the initial design affect the performance of algo-

rithms in terms of number of simplex gradients Np,s required to solve problems to

within some accuracy ε?
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It was found that for continuous bound constrained problems, the use of system-

atic designs resulted in inferior performance when compared with algorithms that

employed an adaptive deterministic global solver (in this case, DIRECT) to gener-

ate the initial sample set. This adaptive initial sampling strategy enabled intelligent

placement of samples by exploiting the information obtained from past samples. This

is in contrast to static designs such as LHDs which evaluate the expensive function

at fixed locations. Furthermore, it was found that use of smaller initial designs re-

sulted in superior performance when compared with algorithms that employed larger

designs. Smaller designs enabled the sophisticated surrogate model-based algorithms

to place samples sooner, resulting in better performance for the same budget.

Research Question 2: Within the context of GP-based global optimization, what

ISC has the highest potential to obtain the largest reduction in the function values of

computationally expensive black-box problems under budget constraints? How does

the performance of non-GP-based algorithms compare?

It was inferred from the observations in §2.2.4 that MLE-based algorithms were

inferior to fully Bayesian algorithms. The fully Bayesian approach marginalizes the

uncertainty of the hyperparameters into the surrogate model and hence ISC. This

enables better decision making versus MLE when computing future iterates. By

employing a weighted sum model with weights determined by the Bayesian method-

ology, more can be learned about the hyperparameters. It was found that for bound

constrained problems, the fully Bayesian approach did not provide a significant per-

formance gain over the state-of-the-art MLE-based algorithm EGO. A possible expla-

nation for this result was that the bound constrained test problems were not difficult

enough to scope the algorithms appropriately. While the performance of the fully

Bayesian approach was better than or equal to the other GP-based approaches, its
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performance was dominated by CORS-RBF. This is a non-Bayesian approach which

uses the surrogate model directly as the ISC, with some additional constraints to bal-

ance the global and local search. This evidence supports the notion that the bound

constrained test problems were not difficult enough to appropriately determine the

scope of the algorithms.

Research Question 3: Within the context of GP-based global optimization, how

should nonlinear constraints be handled such that the resulting algorithm will solve

more problems to a higher degree of accuracy given a budget? How does the perfor-

mance of non-GP-based constraint-handling methods compare?

With the exception of a few outliers, fBcEGO demonstrated definitive superior

performance on the algebraic nonlinearly constrained problems, solving up to three

times as many problems than the competing algorithms for a given budget. fBcEGO

uses the fully Bayesian version of the constrained EI criterion as the ISC. The mul-

tiplicative nature of the constrained EI criterion magnifies the poor decision-making

abilities of the MLE approach when this method fails to generate a suitable model of

the data. Nonsensical sample placement can result from the inadequacy of a single

model. DIRECT is generally dominated by the surrogate model-based algorithms, all

of which demonstrate similar performance with respect to each other.

Research Question 4: What strategy or strategies can be used to handle observa-

tions which have been corrupted by deterministic noise?

It was found that the regression-based EGO and fBcEGO algorithms were superior

to either a regression-based P-algorithm or a regression-based one-stage EGO algo-

rithm. No tests on noise corrupted problems were conducted for the non-GP-based
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algorithms.

Research Question 5: If a problem is believed to be nonsmooth, i.e., exhibits non-

differentiable subspaces, how can this belief be included in a surrogate model-based

algorithm? What if this belief is incorrect?

It was found that for the GP-based algorithms, employing nonsmooth basis func-

tions to solve nonsmooth problems was a superior strategy versus employing smooth

basis functions to solve the same problems. All nonsmooth problems were nondiffer-

entiable at the global minimizers. It was inferred that if the global minimizer occurred

in the differentiable region of the design space, employing nonsmooth basis functions

would degrade performance. An unexpected result was that CORS-RBF performed

worse on nonsmooth problems when employing a nonsmooth basis function. This

is because the CORS framework directly uses the surrogate model as the ISC, thus

the ability to accurately model the smooth regions becomes important. Performance

also degrades if nonsmooth basis functions are employed to solve smooth problems.

Nonsmooth basis functions should only be utilized in GP-based algorithms if there is

a strong motivation to do so.

Research Question 6: When hard constraints are encountered, how should the

failed values be imputed such that subsequent iterations are more likely to be suc-

cessful?

fBcEGO was applied to an airfoil design problem with hard constraints. Three

imputation methods were tested: predictor imputation, penalized imputation, and

maximum value imputation. The penalized imputation method resulted in the best

performance in terms of increased sampling in the feasible region and function value
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reduction. The penalized imputation method penalizes failed iterations by a penalty

which increases as the distance to other samples increases. The magnitude of this

penalty must be moderate such that the surrogate model through the feasible and

imputed samples does not become warped. The predictor and maximum value im-

putation methods do not penalize failed iterations by a large enough penalty, which

causes fBcEGO to sample more in the infeasible regions and in some cases to stall.

10.3 Recommendations

fBcEGO is not appropriate for all problems. Every algorithm has a specialized niche of

problems that it is well-suited to solve. The No Free Lunch theorem for optimization

states that “for any algorithm, any elevated performance over one class of problems

is offset by performance over another class” [126]. The more technical challenges

a problem exhibits, the more suitable fBcEGO is to solve it. However, the primary

consideration is the computational expense. When problems become very expensive,

the function evaluation budget is limited and there is no choice but to resort to

sophisticated algorithms such as fBcEGO. Highly sophisticated algorithms have large

analytical times; however, it is the relative analytical time when compared with a

single function evaluation of the expensive code that is important. fBcEGO is especially

well-suited for solving very expensive nonlinearly constrained problems, as indicated

by the results in §8.4.

In theory, fBcEGO can be applied to problems of arbitrary dimension and with an

arbitrary number of constraints, but in practice, the analytical time of the algorithm

will need to be considered relative to the time required to make one call to the

function being optimized. The proposed model fitting method bypasses the curse of

dimensionality and is indirectly dependent on the dimension of the problem through

the samples. The evaluation of the fully Bayesian EI criterion is also independent

of the dimension of the problem, but requires O(mk3) operations at each iteration
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Figure 96: Number of samples k versus total analytical time of fBcEGO on FLOPS
problem.

where m is the equivalent number of inequality constraints (recall that this is equal to

|I|+ 2 |E|) and k is the number of samples. The maximization of the ISC depends on

the dimension of the problem indirectly through the number of samples and directly

through the method used to maximize the ISC. In this research, DIRECT was used with

100n function evaluations as the ISC subsolver. Other methods may scale differently

with n.

As a benchmark, the aircraft design problem required approximately 12 hours to

terminate with N = 20 simplex gradients (12n+ 3 LHD+FCP samples included) on

64-bit Windows 7 PC with 4GB RAM and a quad-core Intel i5 750 processor running

at 2.67 GHz; four instances of MATLAB 7.9 were running in parallel. This time

measure is due entirely to the analytical effort of fBcEGO, since one FLOPS execution

required less than one second to complete (see Figure 96). For inexpensive problems,

the analytical time of fBcEGO dominates, but fBcEGO has been specifically developed

for very expensive functions, where the analytical time is only a small percentage of

the time required to make one call to the expensive function.
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10.4 Suggestions For Further Research

fBcEGO can benefit from parallelization of the model fitting method. The objective

function and constraints are constructed in exactly the same way. Thus, parallelizing

the model fit step can reduce fBcEGO’s wall time. fBcEGO requires O(mk3) operations

at each iteration, where m is the equivalent number of inequality constraints and k is

the number of samples. Recall that the use of isotropic basis functions eliminated the

curse of dimensionality at the model fit step, but the number of function evaluations

required by surrogate model-based global optimization algorithms to solve problems

is still dependent on the dimension of the problem.

The primary solver (DIRECT) used to maximize the ISC for the competing al-

gorithms can also benefit from parallelization. The constrained EI criterion requires

O(Imk3) operations at each iteration, where I is the number of elements in the priors

p(θ) in the fully Bayesian approach. Maximization of the ISC can become expensive

for larger problems. DIRECT makes one or more independent function evaluations of

the constrained EI criterion at each iteration, with the first three evaluations always

being the same. Thus, these evaluations can be parallelized.

It was mentioned in Remarks 3.2.1, 3.2.2, and 3.2.3 that the EI criterion can

underflow to zero. This was a common situation during this research and not an

isolated case. For the MLE-based criteria, it was possible to write an asymptotic

expansion for the ISC to eliminate underflow. For the fully Bayesian approach this was

not possible. The implementation of the student t distribution which defined the fully

Bayesian EI criterion was more stable than the erf(·) function that defined the MLE-

based EI criterion, but underflow and precision-related problems still occurred. A

solution to this issue at the mathematical level may further improve the performance

of fBcEGO.
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APPENDIX A

TEST PROBLEMS

A.1 Bound Constrained Test Problems

B-1. Schubert problem [46]

minimize
x∈R

−
5∑

i=1

k sin[(k + 1)x+ k]

subject to − 10 ≤ x ≤ 10

(B-1)

There are three global minima located at x∗ = −6.774576, x∗ = −6.774576+2π,

and x∗ = −6.774576 + 4π with y(x∗) = −12.031249. There are 16 additional

nonglobal minima.

B-2. Branin function [29]

minimize
x∈R2

(
x2 −

5.1

4π2
x2

1 +
5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10

subject to −5 ≤ x1 ≤ 10

0 ≤ x2 ≤ 15

(B-2)

There are three global minima at x∗ = (−π, 12.274999), x∗ = (π, 2.275000), and

x∗ = (9.424777, 2.474999) with y(x∗) = 5/(4π)

B-3. Camel back 3 [5]

minimize
x∈R2

2x2
1 − 1.05x4

1 + 1
6
x6

1 + x1x2 + x2
2

subject to −1.9 ≤ x1 ≤ 1.9

−1.1 ≤ x2 ≤ 1.1

(B-3)

There is one global minimum at x∗ = (0, 0) with y(x∗) = 0 and two other

nonglobal minima.
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B-4. Camel back 6 [5]

minimize
x∈R2

4x2
1 − 2.1x4

1 + 1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2

subject to −1.9 ≤ x1 ≤ 1.9

−1.1 ≤ x2 ≤ 1.1

(B-4)

This function possesses 180◦ symmetry about the origin and has three conjugate

pairs of minima. There is one pair of global minima at x∗ = (±0.0898420,∓0.712656)

with y(x∗) = −1.031628 and two additional pairs of nonglobal minima.

B-5. Dixon & Price function (n = 2)

minimize
x∈Rn

(x1 − 1)2 + 2(2x2
2 − x2)2

subject to −1 ≤ x1 ≤ 2

−1 ≤ x2 ≤ 1

(B-5)

There is one global minimum at x∗ = (1, 1/
√

2) with y(x∗) = 0 and one non-

global minimum at x∗ = (1/3, 0) with y(x∗) = 2/3.

B-6. Goldstein & Price function [29]

minimize
x∈R2

[1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

× [30 + (2x1 − 3x2)2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

subject to − 2 ≤ xi ≤ 2, i = 1, 2

(B-6)

This function has four nonglobal local minima and one global minimum at x∗ =

(0,−1) with y(x∗) = 3.

B-7. n-dimensional Modified Langerman Problem [5]

minimize
x∈Rn

−
5∑

j=1

cj cos(πdj) exp(−dj/π)

subject to 0 ≤ xi ≤ 10, i = 1, . . . ,n

(B-7)
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where dj =
∑n

i=1(xi − aji)2. The coefficients cj and aji are given in Table 31.

The number of local minima is unknown. Some global minima are shown in

Table 32.

Table 31: Data for n-dimensional Modified Langerman Problem, test problem B-7.

j cj aji
i = 1 2 3 4 5 6 7 8 9 10

1 0.806 9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.020
2 0.517 9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374
3 0.100 8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982
4 0.908 2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.377 1.426
5 0.965 8.074 8.777 3.467 1.867 6.708 6.349 4.534 0.276 7.633 1.567

Table 32: Some global minimizers of the n-dimensional Modified Langerman Problem,
test problem B-7.

n 2 5 7 10

y(x∗) −1.030632 −0.965000 −0.517000 −0.965000

B-8. Modified Rosenbrock function [5]

minimize
x∈R2

100
(
x2

1 − x2

)2
+
(
6.4(x2 − 1

2
)2 − x1 − 3

5

)2

subject to −5 ≤ xi ≤ 5, i = 1, 2

(B-8)

This function has two global minima at x∗ = (1, 1) with y(x∗) = 0 and x∗ =

(0.3412, 0.1164) with y(x∗) = 0

B-9. n-dimensional Paviani problem [5, 49]

minimize
x∈Rn

−
n∑

i=1

(
(log xi − 2)2 + log(10− xi)2

)2 −
(

n∏

i=1

xi

)0.2

subject to 2.001 ≤ xi ≤ 9.999, i = 1, . . . ,n

(B-9)

The number of local minima is unknown. The global minima are presented in

Table 33.
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Table 33: Global optimizers for n-dimensional Paviani problem, test problem B-9.

n y(x∗) x∗

2 4.981510 (8.538791, 8.538791)
5 9.730525 (8.740704, . . . , 8.740704)
10 −45.778470 (9.350257, . . . , 9.350257)

B-10. Gulf R&D problem [70]

minimize
x∈R3

99∑

i=1

[
exp

(
−(ui − x2)x3

x1

)
− i

100

]2

subject to 0.1 ≤ x1 ≤ 100

0 ≤ x2 ≤ 25.6

0 ≤ x3 ≤ 5

(B-10)

where

ui = 25 +

(
−50 log

i

100

)2/3

There is one global minimum at x∗ = (50, 25, 1.5) with y(x∗) = 0.

B-11. Hartman function (n = 3, 6) [29]

minimize
x∈Rn

−
4∑

i=1

ci exp

(
−

n∑

j=1

aij(xj − pij)2

)

subject to 0 ≤ xi ≤ 1, i = 1, . . . ,n

(B-11)

The parameters ci, aij, and pij, i = 1, . . . ,n, j = 1, 2, 3, are given in Table 34.

For n = 3, the global minimum is located at x∗ = (0.114614, 0.555649, 0.852547)

with y(x∗) = −3.862782. For n = 6, the global minimum is located at

x∗ = (0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.657301)

with y(x∗) = −3.322368.
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Table 34: Data for the Hartman function, test problem B-11.

(a) n = 3

i aij ci pij

1 3.0 10 30 1.0 3689.0 117.0 2673.
2 0.1 10 35 1.2 0.4699 0.4387 0.747
3 3.0 10 30 3.0 1091.0 8732.0 5547.
4 0.1 10 35 3.2 0.03815 0.5743 0.8828

(b) n = 6

i aij ci pij

1 10.00 3.0 17.00 3.5 1.7 8 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10.0 17.00 0.1 8.0 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3.00 3.5 1.70 10.0 17.0 8 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 17.00 8.0 0.05 10.0 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

B-12. n-dimensional Michalewicz function [12]

minimize
x∈Rn

−
n∑

i=1

sin(xi)
(
sin(ix2

i /π)
)2m

subject to 0 ≤ xi ≤ π, i = 1, 2, . . . ,n

(B-12)

The function uses m = 10. The number of local minima is unknown. For n = 5,

y(x∗) = −4.687658 and for n = 10, y(x∗) = −9.660152.

B-13. Shekel’s Foxholes (n = 2) [5]

minimize
x∈R2

−
30∑

j=1

1

cj +
∑n

i=1(xi − aji)2

subject to 0 ≤ xi ≤ 10, i = 1, . . . ,n

(B-13)

The parameters cj and aji, i = 1, 2, . . . ,n, j = 1, 2, . . . , 30 are given in Table

35. The global minimum is located at x∗ = (8.024065, 9.146534) with y(x∗) =

−12.119008.

B-14. Shekel-m function

minimize
x∈Rn

−
m∑

j=1

1

cj +
∑n

i=1(xi − aji)2

subject to 0 ≤ xi ≤ 10, i = 1, . . . ,n

(B-14)
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Table 35: Data for Shekel’s Foxholes, test problem B-13.

j cj aji
i = 1 2 3 4 5 6 7 8 9 10

1 0.806 9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.020
2 0.517 9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374
3 0.100 8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982
4 0.908 2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.377 1.426
5 0.965 8.074 8.777 3.467 1.863 6.708 6.349 4.534 0.276 7.633 1.567
6 0.669 7.650 5.658 0.720 2.764 3.278 5.283 7.474 6.274 1.409 8.208
7 0.524 1.256 3.605 8.623 6.905 0.584 8.133 6.071 6.888 4.187 5.448
8 0.902 8.314 2.261 4.224 1.781 4.124 0.932 8.129 8.658 1.208 5.762
9 0.531 0.226 8.858 1.420 0.945 1.622 4.698 6.228 9.096 0.972 7.637
10 0.876 7.305 2.228 1.242 5.928 9.133 1.826 4.060 5.204 8.713 8.247
11 0.462 0.652 7.027 0.508 4.876 8.807 4.632 5.808 6.937 3.291 7.016
12 0.491 2.699 3.516 5.874 4.119 4.461 7.496 8.817 0.690 6.593 9.789
13 0.463 8.327 3.897 2.017 9.570 9.825 1.150 1.395 3.885 6.354 0.109
14 0.714 2.132 7.006 7.136 2.641 1.882 5.943 7.273 7.691 2.880 0.564
15 0.352 4.707 5.579 4.080 0.581 9.698 8.542 8.077 8.515 9.231 4.670
16 0.869 8.304 7.559 8.567 0.322 7.128 8.392 1.472 8.524 2.277 7.826
17 0.813 8.632 4.409 4.832 5.768 7.050 6.715 1.711 4.323 4.405 4.591
18 0.811 4.887 9.112 0.170 8.967 9.693 9.867 7.508 7.770 8.382 6.740
19 0.828 2.440 6.686 4.299 1.007 7.008 1.427 9.398 8.480 9.950 1.675
20 0.964 6.306 8.583 6.084 1.138 4.350 3.134 7.853 6.061 7.457 2.258
21 0.789 0.652 2.343 1.370 0.821 1.310 1.063 0.689 8.819 8.833 9.070
22 0.360 5.558 1.272 5.756 9.857 2.279 2.764 1.284 1.677 1.244 1.234
23 0.369 3.352 7.549 9.817 9.437 8.687 4.167 2.570 6.540 0.228 0.027
24 0.992 8.798 0.880 2.370 0.168 1.701 3.680 1.231 2.390 2.499 0.064
25 0.332 1.460 8.057 1.336 7.217 7.914 3.615 9.981 9.198 5.292 1.224
26 0.817 0.432 8.645 8.774 0.249 8.081 7.461 4.416 0.652 4.002 4.644
27 0.632 0.679 2.800 5.523 3.049 2.968 7.225 6.730 4.199 9.614 9.229
28 0.883 4.263 1.074 7.286 5.599 8.291 5.200 9.214 8.272 4.398 4.506
29 0.608 9.496 4.830 3.150 8.270 5.079 1.231 5.731 9.494 1.883 9.732
30 0.326 4.138 2.562 2.532 9.661 5.611 5.500 6.886 2.341 9.699 6.500
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The parameters cj and aji, i = 1, 2, . . . ,n, j = 1, 2, . . . ,m are given in Table 36.

The number of local minima is unknown. The global minima for n = 5, 7, and

10 are presented in Table 37.

Table 36: Data for the Shekel-m function, test problem B-14.

j cj aji
i = 1 2 3 4

1 0.1 4.0 4.0 4.0 4.0
2 0.2 1.0 1.0 1.0 1.0
3 0.2 8.0 8.0 8.0 8.0
4 0.4 6.0 6.0 6.0 6.0
5 0.4 3.0 7.0 3.0 7.0
6 0.6 2.0 9.0 2.0 9.0
7 0.3 5.0 5.0 3.0 3.0
8 0.7 8.0 1.0 8.0 1.0
9 0.5 6.0 2.0 6.0 2.0
10 0.5 7.0 3.6 7.0 3.6

Table 37: Some global minimizers for the Shekel-m function, test problem B-14.

m y(x∗) x∗

5 −10.153200 (4, 4, 4, 4)
7 −10.402941 (4, 4, 4, 4)
10 −10.536410 (4, 4, 4, 4)
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A.2 Nonlinearly Constrained Test Problems

N-1. Constrained Schubert problem 1

minimize
x∈R

−
5∑

i=1

k sin[(k + 1)x+ k]

subject to 10 cos(x) exp
(
−0.5(x/

√
10)2

)
− x ≥ 0

−10 ≤ x ≤ 10

(B-1)

There are two global minima at x∗ = −6.774576 and x∗ = −6.774576 + 2π with

y(x∗) = −12.031249. There are nine additional nonglobal minima.

N-2. Constrained Schubert problem 2

minimize
x∈R

−
5∑

i=1

k sin[(k + 1)x+ k]

subject to 10 cos(x) exp
(
−0.5(x/

√
10)2

)
− x ≥ 0

sin(πx) ≥ 0

−10 ≤ x ≤ 10

(B-2)

There is one global minimum at x∗ = −1.725492 with y(x∗) = −9.494706 and

twelve additional nonglobal minima.

N-3. Hock & Schittkowski 9 [49]

minimize
x∈R2

sin(πx1/12) cos(πx2/16)

subject to 4x1 − 3x2 = 0

4x1 − 3x2 ≥ 0

−15 ≤ xi ≤ 15, i = 1, 2

(B-3)

There are two global minima at x∗ = (−3,−4) and x∗ = (9, 12) with y(x∗) =

−1/2.

226



www.manaraa.com

N-4. Multiple disconnected regions

minimize
x∈R2

x1 − x2

subject to sin(πx1) cos(πx2)− 0.5 ≥ 0

−2 ≤ xi ≤ 2, i = 1, 2

(B-4)

This problem features ten feasible disconnected convex regions with a linear

objective function. Hence, there are a total of ten minima, one of which is

global at x∗ = (π−1 sin(0.5)− 2, 2) with y(x∗) = π−1 sin(0.5)− 4.

N-5. Hock & Schittkowski 12 [49]

minimize
x∈R2

0.5x2
1 + x2

2 − x1x2 − 7x1 − 7x2

subject to 25− 4x2
1 − x2

2 ≥ 0

−5 ≤ xi ≤ 5, i = 1, 2

(B-5)

There is global one minimum at x∗ = (2, 3) with y(x∗) = −30.

N-6. Hock & Schittkowski 14 [49]

minimize
x∈R2

(x1 − 2)2 + (x2 − 1)2

subject to −0.25x2
1 − x2

2 + 1 ≥ 0

x1 − 2x2 + 1 = 0

−5 ≤ xi ≤ 5, i = 1, 2

(B-6)

There is one global minimum at x∗ = (1/2(
√

7− 1), 1/4(
√

7 + 1)) with y(x∗) =

9− 2.875
√

7.

N-7. Hock & Schittkowski 19 [49]

minimize
x∈R2

(x1 − 10)3 + (x2 − 20)3

subject to (x1 − 5)2 + (x2 − 5)2 − 100 ≥ 0

−(x2 − 5)2 − (x1 − 6)2 + 82.81 ≥ 0

0 ≤ xi ≤ 20, i = 1, 2

(B-7)
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There is one global minimum at x∗ = (14.095, 0.842961) with y(x∗) = −6961.813875.

N-8. Mystery function [106]

minimize
x∈R2

2 + 0.01(x2 − x2
1)2 + (1− x1)2

+ 2(2− x2)2 + 7 sin(0.5x1) sin(0.7x1x2)

subject to sin(x1 − x2 − π/8) ≥ 0

0 ≤ xi ≤ 5, i = 1, 2

(N-8)

There is one global minimum at x∗ = (2.744951, 2.352252) with y(x∗) = −1.174274.

The number of local minima is unknown.

N-9. Hock & Schittkowski 26 [49]

minimize
x∈R3

(x1 − x2)2 + (x2 − x3)4

subject to (1 + x2
2)x1 + x4

3 − 3 = 0

−5 ≤ xi ≤ 5, i = 1, . . . , 3

(B-9)

There are two global minima at x∗ = (1, 1, 1) and x∗ = (a, a, a) with y(x∗) = 0.

The constant a is given as

a = 3
√
α− β − 3

√
α + β − 2/3 (A.1)

α =
√

139/108 (A.2)

β = 61/54 (A.3)

N-10. Hock & Schittkowski 32 [49]

minimize
x∈R3

(x1 + 3x2 + x3)2 + 4(x1 − x2)2

subject to 6x2 + 4x3 − x3
1 ≥ 0

1− x1 − x2 − x3 = 0

0 ≤ xi ≤ 2, i = 1, . . . , 3

(B-10)
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There is one global minimum at x∗ = (0, 0, 1) with y(x∗) = 1. The number of

nonglobal minima is unknown.

N-11. Hock & Schittkowski 33 [49]

minimize
x∈R3

(x1 − 1)(x1 − 2)(x1 − 3) + x3

subject to x2
3 − x2

2 − x2
1 ≥ 0

x2
1 + x2

2 + x2
3 − 4 ≥ 0

0 ≤ xi ≤ 5, i = 1, . . . , 3

(B-11)

There is one global minimum at x∗ = (0,
√

2,
√

2) with y(x∗) =
√

2 − 6. The

number of nonglobal minima is unknown.

N-12. Phase and chemical equilibrium problem, binary system of hydrogen sulfide and

methane [37, §8.6.7]

minimize
x∈R2,z∈R

2∑

i=1

xi log xi +
2∑

i=1

xi log φ̂i −
2∑

i=1

xi log xFi φ̂
F
i

subject to
2∑

i=1

xi log φ̂i = z − 1− log(z −B)− A

B
log

(
1 +

B

z

)

z3 − z2 + (A−B2 −B)z − AB = 0

2∑

i=1

xi = 1

0 ≤ xi ≤ 1, i = 1, 2

0 ≤ z ≤ 1

(N-12)

where

A =
2∑

i=1

2∑

j=1

αijxixj (A.4)

B =
2∑

i=1

bixi (A.5)
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The data for this problem is given below:

xF = [0.0187, 0.9813]T (A.6)

log φFi = [−1.0672,−0.3480]T (A.7)

b = [0.0771517, 0.0765784]T (A.8)

α =




10.4633 0.579822

0.579822 0.379615


 (A.9)

Because of the term log(z − B), when z < B, the objective function is set to

a large positive (here, 10000) to drive the search away from this region. This

problem has four nonglobal local minima and one global minimum at (x∗, z∗) =

(1, 0, 0.078314) with y(x∗, z∗) = −82.112243.

N-13. Test Problem 4 [36, §3.4]

minimize
x∈R3

−2x1 + x2 − x3

subject to 4− x1 − x2 − x3 ≥ 0

6− 3x2 − x3 ≥ 0

xTBTBx− 2rTBx+ ‖r‖2
2 − 0.25‖b− v‖2

2 ≥ 0

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 2

0 ≤ x3 ≤ 3

(B-13)

where B is the following 3× 3 matrix:




0 0 1

0 −1 0

−2 1 −1



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b = [3, 0,−4]T

v = [0,−1,−6]T

r = [1.5,−0.5,−5]T

There is one global minimum at x∗ = (0.5, 0, 3) with y(x∗) = −4.

N-14. Hock & Schittkowski 46 [49]

minimize
x∈R5

(x1 − x2)2 + (x3 − 1)2 + (x4 − 1)4 + (x5 − 1)6

subject to x2
1x4 + sin(x4 − x5)− 1 = 0

x2 + x4
3x

2
4 − 2 = 0

0 ≤ xi ≤ 3, i = 1, . . . , 5

(B-14)

There is one global minimum at x∗ = (1, 1, 1, 1, 1) with y(x∗) = 0.

N-15. Hock & Schittkowski 81 [49]

minimize
x∈R5

exp(x1x2x3x4x5)− 0.5(x3
1 + x3

2 + 1)2

subject to x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

x2x3 − 5x4x5 = 0

x3
1 + x3

2 + 1 = 0

−2.3 ≤ xi ≤ 2.3, i = 1, 2

−3.2 ≤ xi ≤ 3.2, i = 3, 4, 5

(B-15)

There is one known solution at

x∗ = (−1.717142, 1.159571, 1.827248,−0.7636474,−0.7636390)

with y(x∗) = 0.0539498478.
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N-16. Hock & Schittkowski 83 [49]

minimize
x∈R5

5.3578547x2
3 + 0.8356891x1x5

+37.293239x1 − 40792.141

subject to a1 + a2x2x5 + a3x1x4 − a4x3x5 ≥ 0

−a1 − a2x2x5 − a3x1x4 + a4x3x5 + 92 ≥ 0

a5 + a6x2x5 + a7x1x2 + a8x
2
3 − 90 ≥ 0

−a5 − a6x2x5 − a7x1x2 − a8x
2
3 + 90 + 20 ≥ 0

a9 + a10x3x5 + a11x1x3 + a12x3x4 − 20 ≥ 0

−a9 − a10x3x5 − a11x1x3 − a12x3x4 + 25 ≥ 0

(N-16)

78 ≤ x1 ≤ 102

33 ≤ x2 ≤ 45

27 ≤ x3 ≤ 45

27 ≤ x4 ≤ 45

27 ≤ x5 ≤ 45

The coefficients ai are given in Table 38. The number of local minima is un-

known. The best known minimum occurs at x∗ = (78, 33, 29.9953, 45, 36.7758)

with y(x∗) = −30665.538672.

Table 38: Data for test problem N-16.

i ai i ai

1 85.334407 7 0.0029955
2 0.0056858 8 0.0021813
3 0.0006262 9 9.300961
4 0.0022053 10 0.0047026
5 80.51249 11 0.0012547
6 0.0071317 12 0.0019085
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N-17. Continuous stirred tank reactor (CSTR) sequence design [37, §7.2.2]

minimize
x∈R6

−x4

subject to x1 + k1x1x5 = 1

x2 − x1 + k2x2x6 = 0

x3 + x1 + k3x3x5 = 1

x4 − x3 + x2 − x1 + k4x4x6 = 0

√
x5 +

√
x6 ≤ 4

(N-17)

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

0 ≤ x3 ≤ 1

0 ≤ x4 ≤ 1

10−5 ≤ x5 ≤ 16

10−5 ≤ x6 ≤ 16

where k1 = 0.09755988, k2 = 0.99k1, k3 = 0.0391908, k4 = 0.9. The global

minimum occurs at

x∗ = (0.390855, 0.390855, 0.374613, 0.374610, 15.974712, 10−5)

with y(x∗) = −0.374610.
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N-18. Hesse function [37, §3.4]

minimize
x∈R6

−25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2

−(x4 − 4)2 − (x5 − 1)2 − (x6 − 4)2

subject to (x3 − 3)2 + x4 − 4 ≥ 0

(x5 − 3)2 + x6 − 4 ≥ 0

2− x1 + 3x2 ≥ 0

2 + x1 − x2 ≥ 0

6− x1 − x2 ≥ 0

x1 + x2 − 2 ≥ 0

(N-18)

0 ≤ x1 ≤ 6

0 ≤ x2 ≤ 2

1 ≤ x3 ≤ 5

0 ≤ x4 ≤ 6

1 ≤ x5 ≤ 5

0 ≤ x6 ≤ 10

This function is a concave quadratic with 18 local minima, one of which is

global. The problem is separable into three two-dimensional problems in (x1,x2),

(x3,x4), and (x5,x6). The global minimum is located at x∗ = (5, 1, 5, 0, 5, 10)

with y(x∗) = −310.

N-19. Hock & Schittkowski 87 [49]

minimize
x∈R6

y1(x) + y2(x)

subject to 300− x1 − a−1
1 x3x4 cos(a2 − x6) + a3a

−1
1 a4x

2
3 = 0

−x2 − a−1
1 x3x4 cos(a2 + x6) + a3a

−1
1 a4x

2
4 = 0

−x5 − a−1
1 x3x4 sin(a2 + x6) + a3a

−1
1 a5x

2
4 = 0

200− a−1
1 x3x4 sin(a2 − x6) + a3a

−1
1 a5x

2
3 = 0

(N-19)
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0 ≤ x1 ≤ 400

0 ≤ x2 ≤ 1000

340 ≤ x3 ≤ 420

340 ≤ x4 ≤ 420

−1000 ≤ x5 ≤ 10000

0 ≤ x6 ≤ 0.5236

The coefficients ai are given in Table 39 and the functions y1(·) and y2(·) are defined in

equation (A.10). The number of local minima is unknown. The best known minimum

occurs at x∗ = (204.201838, 99.999919, 383.252591, 419.999803,−11.490087, 0.072154)

with y(x∗) = 8926.052867.

Table 39: Data for test problem N-19.

i ai

1 131.078
2 1.48577
3 0.90798
4 cos 1.47588
5 sin 1.47588

y1(x) =





30x1, 0 ≤ x1 < 300

31x1, 300 ≤ x1 ≤ 400
(A.10a)

y2(x) =





28x2, 0 ≤ x2 < 100

29x2, 100 ≤ x1 < 200

30x2, 200 ≤ x2 ≤ 1000

(A.10b)
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N-20. Hock & Schittkowski 100 [49]

minimize
x∈R7

(x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5

+7x2
6 + x4

7 − 4x6x7 − 10x7 − 10x6 − 8x7

subject to 127− 2x2
1 − 3x4

2 − x3 − 4x2
4 − 5x5 ≥ 0

282− 7x1 − 3x2 − 10x2
3 − x4 + x5 ≥ 0

196− 23x1 − x2
2 − 6x2

6 + 8x7 ≥ 0

−4x2
1 − x2

2 + 3x1x2 − 2x2
3 − 5x6 + 11x7 ≥ 0

(N-20)

1 ≤ x1 ≤ 3

1 ≤ x2 ≤ 3

−1 ≤ x3 ≤ 1

3 ≤ x4 ≤ 5

−1 ≤ x5 ≤ 1

0 ≤ x6 ≤ 2

0 ≤ x7 ≤ 2

The original version of this problem has no bound constraints but these are added for

modeling purposes. There is one global minimum at

x∗ = (2.330499, 1.951372,−0.477541, 4.365726,−0.624487, 1.038131, 1.594227)

with y(x∗) = 680.630057.
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A.3 Nonsmooth Problems

This section lists the nonsmooth test problems. Unless otherwise noted, the objective

function for each problem is

y(x) =

mp∑

i=1

|fi(x)| (A.11)

where mp is the number of terms fi(x), which are given in each problem along

with the bound constraints.

NS-1. One-dimensional nonsmooth problem

minimize
x∈R

y(x)

subject to 0 ≤ x ≤ 50

(NS-1)

where

y(x) =





−x, x ≤ 0

−1
5
x, 0 < x ≤ 5

−1
2
x+ 1.5, 5 < x ≤ 10

1
4
x2 − 28.5, 10 < x ≤ 20

−2x+ 112.5, 20 < x ≤ 25

8x− 137.5, 25 < x ≤ 33

−x+ 159.5, 33 < x ≤ 40

x+ 79.5, 40 < x ≤ 45

−5x+ 350.5, 45 < x ≤ 50

x+ 50.5, 50 < x

(A.12)

There is one global minimum at x∗ = 10 with y(x∗) = −3.5. There are three

additional nonglobal minima.
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NS-2. Two-dimensional nonsmooth problem 1

f1(x) = ξ1

f2(x) = ξ2

f3(x) = 2ξ2
1 − 1.05ξ4

1 + 1
6
ξ6

1 + ξ1ξ2 + ξ2
2

− 1.9 ≤ ξ1 ≤ 1.9

− 1.1 ≤ ξ2 ≤ 1.1

(NS-2)

Here, ξ1 = x1 − 0.5 and ξ2 = x2 + 0.25. There is one global minimum at

x∗ = (0.5,−0.25) with y(x∗) = 0.

NS-3. Two-dimensional nonsmooth problem 2

f1(x) = ξ1

f2(x) = ξ2

f3(x) = 4ξ2
1 − 2.1ξ4

1 + 1
3
ξ6

1 + ξ1ξ2 − 4ξ2
2 + 4ξ4

2

− 1.9 ≤ ξ1 ≤ 1.9

− 1.1 ≤ ξ2 ≤ 1.1

(NS-3)

Here, ξ1 = x1 − 0.5 and ξ2 = x2 + 0.25. There is one global minimum at

x∗ = (0.5,−0.25) with y(x∗) = 0. There are four additional nonglobal minima.

NS-4. Two-dimensional nonsmooth problem 3

f1(x) = x1

f2(x) = 3−
4∑

i=1

ci exp

(
−

2∑

j=1

aij(xj − pij)2

)

0 ≤ xi ≤ 1, i = 1, . . . , 3

(NS-4)

The term f2(x) is part of the Hartman family of functions (see test problem B-

11). The parameters ci, aij, and pij, i, j = 1, 2, 3, are given in Table 34. There

is one global minimum at x∗ = (0.004109, 0.294240) with y(x∗) = 0.004109

and one nonglobal minimum at x∗ = (0, 1) with y(x∗) = 0.0378342.
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NS-5. Two-dimensional nonsmooth problem 4

f1(x) = x1

f2(x) = 2x2

f3(x) = (x1 − 1)2 + 2(2x2
2 − x1)2 − 5

− 1 ≤ x1 ≤ 2

− 1 ≤ x2 ≤ 1

(NS-5)

There is one global minimum at x∗ = (−0.868517, 0) with y(x∗) = 0.868580.

There is one additional nonglobal minima at x∗ = (1.535183, 0) with y(x∗) =

1.535190.

NS-6. Two-dimensional nonsmooth problem 5

minimize
x∈R2

10 +

(
x2 −

5.1

4π2
x2

1 +
5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10 |x1|+ 10 |x2|

subject to −10 ≤ xi ≤ 15, i = 1, 2

(NS-6)

There is one global minimum at x∗ = (2.597988, 0) with y(x∗) = 3.562570.

NS-7. Two-dimensional nonsmooth problem 6

f1(x) = 0.1x1 − 4

f2(x) = 0.1x2 − 5

f3(x) = 1−
30∑

j=1

1

cj +
∑n

i=1(xi − aji)2

5 ≤ xi ≤ 12, i = 1, 2

(NS-7)

The parameters cj and aji, i = 1, 2, j = 1, . . . , 30 are given in Table 35. There

is one global minimum at x∗ = (8.669134, 9.626276) with y(x∗) = 7.170459.

The number of nonglobal minima is unknown.
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NS-8. Two-dimensional nonsmooth problem 7

f1(x) = x2 −
5.1

4π2
x2

1 +
5

π
x1 − 6

f2(x) = 10

(
1− 1

8π

)
cos(x1/π)

f3(x) = 10

− 15 ≤ xi ≤ 15, i = 1, 2

(NS-8)

There are two global minima at x∗ = (4.934802, 1.291955) and x∗ = (14.804407, 10.751483)

with y(x∗) = 10. There is one local minimum at x∗ = (−4.934802, 14.900335)

with y(x∗) = 12.099583.

NS-9. Nonsmooth Hartman 3 problem

f1(x) = −
4∑

i=1

ci exp

(
−

3∑

j=1

aij(xj − pij)2

)

0 ≤ xi ≤ 1, i = 1, 2, 3

(NS-9)

This problem has been derived by taking the absolute value of the Hartman

function, test problem B-11, with n = 3. The parameters ci, aij, and pij,

i = 1, . . . ,n, j = 1, 2, 3, are given in Table 34. There is one global minimum

at x∗ = (1, 1, 0) with y(x∗) = 3.772719 · 10−5. The number of local minima is

unknown.
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APPENDIX B

BAYESIAN MONTE CARLO

Bayesian Monte Carlo (BMC) [76, 93] is a method for performing Bayesian inference

about the value of a nonanalytic integral

yp =

∫
y(x)p(x)dx (B.1)

where p(x) is the probability density of x and y(x) is the function to be integrated.

Simple Monte Carlo (SMC) makes the approximation

yp '
1

k

k∑

i=1

y(x(i)) (B.2)

where x(i) are random draws from p(x), which converges to the right answer in

the limit of large numbers of samples k. Thus, the first objection to SMC is the com-

putational inefficiency of the method. The second objection is that SMC procedures

ignore the values of x(i) when forming the estimate, e.g., if three points are sampled

and two happen to be the same point (thereby conveying no new information about

the integrand), then averaging the samples is clearly inappropriate.

Considering the evaluation of the integral (B.1) as a Bayesian inference problem

avoids the inconsistencies of the SMC approach and can result in better estimates

with fewer function evaluations. The unknown quantity yp can be considered as a

random variable and the uncertainty in yp arises because y(x) cannot be evaluated for

every x. The strategy is to use Bayes’ theorem: assign a prior to y(x) and condition

the prior on the observations y(k) = [y(x(1)), . . . , y(x(k))]T . Since the integral (B.1) is

a linear projection on the direction defined by p(x), the posterior over yp is obtained

by integrating equation (B.1) with the proper substitutions.
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A convenient way of putting priors over functions is through GPs. The classical

assumption is a zero mean, noise-free GP prior, but BMC is extended here to account

for a constant mean, noise corrupted prior. Under a constant mean GP prior, the

joint distribution of any finite number of noise corrupted samples is Gaussian:

y(k) ∼ N (β, Ψ , K + θnI) (B.3)

The elements of the covariance matrix K are given by a covariance function, a

convenient choice being

k(x(i),x(j)) = θ0 exp


−1

2

n∑

h=1

(
x

(i)
h − x

(j)
h

θh

)2



= θ0 exp

[
−1

2

(
x(i) − x(j)

)T
A−1

(
x(i) − x(j)

)]
(B.4)

where A = diag(θ2
1, . . . , θ2

n) and θ0, θh are the hyperparameters. BMC assigns

a prior p(y) to y and updates the posterior p(y|y(k)) after making the observations

y(k) = [y(x(1)), . . . , y(x(k))]. The posterior p(yp|y(k)) is also Gaussian and its mean

and variance are given by [93]:

Eyp(x) =

∫ [∫
y(x)p(y|y(k))dy

]
p(x)dx

=

∫
E[y|y(k)]p(x)dx =

∫
ŷ(x)p(x)dx (B.5a)

var(yp) =

∫∫ [∫
[y(x)− Ey(x)] [y(x0)− Ey(x0)] p(y|y(k))dy

]
p(x)p(x0)dxdx0

=

∫∫
Cov(x,x0)p(x)p(x0)dxdx0 =

∫∫
s2(x)p(x)p(x0)dxdx0 (B.5b)

where E [y] and Cov(x,x0) are the posterior mean and covariance functions of y,

respectively. The standard results for the predictive posterior mean and covariance

are

ŷ(x) = β̂ + kT0 Ψ−1
(
y(k) − β̂

)
(B.6a)

s2(x) = k(x0,x0)− kT0 Ψ−1k0 +

(
1− 1TΨ−1k0

)2

(1TΨ−11)
(B.6b)
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where 1 is the k × 1 column vector of ones. The integrals in equation (B.5) can

be reformulated as

Eyp(x) = β + zTK−1
(
y(k) − β

)
(B.7a)

var(yp) = c+
[
1− 2zTΨ−11

] (
1TΨ−11

)−1
(B.7b)

− zTK−1
[
I− 1

(
1TΨ−11

)−1
1Ψ−1

]
z (B.7c)

where

zi =

∫
k(x,x(i))p(x)dx, i = 1, . . . , k (B.8a)

c =

∫∫
k(x,x0)p(x)p(x0)dxdx0 (B.8b)

In general, combining (B.6) with (B.5) leads to nonanalytic expressions, but if

the density p(x) and covariance function (B.4) are Gaussian, analytical results can be

obtained. In particular, if p(x) ∼ N (b,B), and k(·, ·) is specified by equation (B.4),

zi = θ0

∣∣A−1B + I
∣∣−1/2

exp

[
−1

2
(x(i) − b)T (A+B)−1(x(i) − b)

]
(B.9a)

c = θ0

∣∣2A−1B + I
∣∣−1/2

(B.9b)

Figure 97 illustrates a one-dimensional application of BMC to the integral (B.1)

with y(x) = sincx and p(x) = N (0, 1) against 4, 8, and 12 samples drawn from p(x).

The left column of Figure 97 shows the GP fit to y(x) versus sample size. The right

column shows the distribution of yp. In general, as more samples are added, the GP

fit will improve and the distribution of yp will become more peaked and converge to

the exact value.

Figure 98 demonstrates the convergence rates of SMC and BMC versus sample

size on two multimodal scalar test functions,

y(x) = 2 + 1
20

(x+ 4)(x+ 2)(x+ 1)(x− 1)(x− 3) (B.10)

and

y(x) = x (sin(10x+ 1) + 0.1 sin 15x) (B.11)
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integrated with respect to p(x) = N (−1, 1) and p(x) = N (−0.5, 0.1), respectively.

The functions are shown in the first row of plots. The second row of plots shows

the log10 of the mean squared error between the exact value of the integral (B.1)

(obtained by numerical integration) and the prediction of the method (the mean of

the distribution of yp is used for BMC) over 100 repetitions per sample size, i.e., for

each sample size k, k samples were drawn from p(x) 100 times and each method was

applied to each generated set. As expected, SMC converges at a rate of 1/k. BMC

converges at a rate of approximately 1/k2 for both examples. The third row of plots in

Figure 98 is a set of box plots depicting the performance spread for each method over

100 repetitions per sample size. Outliers are taken as data points that fall outside of

the range [99]

[Q1 − c(Q3 −Q1),Q2 − c(Q3 −Q1)] (B.12)

with c = 1.5 and are represented by crosses. Some interesting properties of BMC can

be seen in the second example with function (B.11). In this example, both methods

converge to the wrong value because outside A, the function (B.11) oscillates with

very large magnitude, so random samples taken in that region add or subtract very

large values to the mean. The second observation is that the number of outliers in the

second example is substantially higher than the number of SMC outliers. This can

be attributed to the failure modes of the MLE approach on function (B.11), which

are discussed in detail in Chapters 2 and 3.
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Figure 97: Application BMC to the integral yp =
∫
y(x)p(x)dx with y(x) = sincx

and p(x) = N (0, 1). Left: GP prediction of y(x); observations were drawn from p(x).
Right: The distribution of yp; true value of yp obtained by numerical integration is
shown by the vertical dotted line.
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Figure 98: Convergence of BMC and SMC versus sample size for two functions.
Top row, left: equation (B.10), p(x) = N (−1, 1). Top row, right: equation (B.11),
p(x) = N (−0.5, 0.1). Middle row: log10 of the mean squared error between the
prediction and the exact value of yp (obtained by numerical integration) over 100
repetitions. Bottom row: box-and-whisker plots of performance versus sample size
over 100 repetitions. 246
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The design of unconventional aircraft requires early use of high-fidelity

physics-based tools to search the unfamiliar design space for optimum designs. Cur-

rent methods for incorporating high-fidelity tools into early design phases for the

purpose of reducing uncertainty are inadequate due to the severely restricted budgets

that are common in early design as well as the unfamiliar design space of advanced

aircraft. This motivates the need for a robust and efficient global optimization algo-

rithm.

This research presents a novel surrogate model-based global optimization algo-

rithm to efficiently search challenging design spaces for optimum designs. The algo-

rithm searches the design space by constructing a fully Bayesian Gaussian process

model through a set of observations and then using the model to make new observa-

tions in promising areas where the global minimum is likely to occur. The algorithm

is incorporated into a methodology that reduces failed cases, infeasible designs, and

provides large reductions in the objective function values of design problems.

Results on four sets of algebraic test problems are presented and the methodol-

ogy is applied to an airfoil section design problem and a conceptual aircraft design

problem. The method is shown to solve more nonlinearly constrained algebraic test

problems than state-of-the-art algorithms and obtains the largest reduction in the

takeoff gross weight of a notional 70-passenger regional jet versus competing design

methods.
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